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Foreword

Aeronautics, a principal research area for NASA from its inception as NACA, has also been the primary focus
for the NASA Lewis Research Center since the 1940’s. In the 1970’s, the Army established drive systems
technology as part of its research to support its ever increasing use of helicopters. This effort has continued to
the present and is now a shared activity of the Army and NASA because of the need for civilian applications.

NASA and Army goals for this research are similar and emphasize reduced weight, noise, and cost with
increased safety, life, and reliability.  Meeting these competing goals requires that improvements be made in
the way components are designed and manufactured. These goals are being met by in-house programs,
contracts, and university grants, through which the talents of world-class university researchers have an impact
on aerospace technology and products of the future.

Dr. Faydor L. Litvin, one of the innovators in the gear geometry field for many decades, best exemplifies the
effective use of NASA funds for research. Dr. Litvin’s methods and theories have been the catalyst to change
the design and manufacture of gears so as to achieve major operational improvements in helicopter gear
systems. He effected these improvements by applying principles based on the geometry of meshing gear
surfaces to correct many problems associated with alignment and manufacturing errors that shift bearing contact
and cause transmission errors.

This book presents recent developments in the theory of gearing and the modifications in gear geometry
necessary to improve the conditions of meshing. Highlighted are low-noise gear drives that have a stable contact
during meshing and a predesigned parabolic transmission error function that can handle misalignment during
operation without sacrificing the low-noise aspects of operation.

This book also provides a comprehensive history of the development of the theory of gearing through
biographies of major contributors to this field. The author’s unique historical perspective was achieved by
assiduous research into the lives of courageous, talented, and creative men who made significant contributions
to the field of gearing. Very often they came from humble backgrounds, sought an education in the face of great
obstacles, made personal sacrifices to attain goals, and worked hard for many years to fulfill their creative
aspirations. The task of accumulating information about these men was extremely difficult, for many were
deceased and facts existed only in family records, library archives, and their companies’ files. Perhaps the most
significant indication of this difficult task is the collection of portraits, many of which were obtained from family
albums held by descendents many generations later. This collection is unique and exists nowhere else.

I believe that this book will be useful to students, engineers, and researchers who work in gearing and that
it will help them to appreciate the genius of those who were pioneers in this field.

John J. Coy
NASA Lewis Research Center
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Preface

There yet remains but one concluding tale
And then this chronicle of mine is ended. . .—A. S. Pushkin, “Boris Godunov,” p. 19

This book consists of three chapters: chapter 1 presents the developments in the theory of gearing; chapter 2,
the geometry and technology of gears; and chapter 3, the biographies of the inventors, scientists, and founders
of gear companies. The goal of the third chapter is to credit the contributions made by our predecessors and to
combine the separate historical pieces of the development of gear technology and gearing theory.

Although the author has tried to be objective in judging the history of the development of gear technique, it
is not a certainty that he has achieved his desire. If this happened, it was not deliberate.

The history of  gear development was the subject of research by H.-Chr. Graf v. Seherr-Thoss (1965),  Darle
W. Dudley (1969), and Dr. Hermann J. Stadtfeld (1993). In the present book, the author tried to complement
these previous publications with new materials and hopes that the reader will find it enlightening.

The history of developments in any area, including gear technology and theory, is the history of creativity,
which has often gone unrecognized during one’s lifetime. The aspiration to create is a passion that enriches the
life but requires unconditional devotion. Usually, creativity is associated with the arts (music, literature,
painting), possibly because they have the greatest influence on our emotions. However, we do not realize the
extent to which this passion conquers the daily activities of many in all levels of society. The desire of gifted
persons to create is the driving force in their lives, bringing them joy and suffering and often no fame. For, Fame,
a capricious goddess, does not award in the proper time and may not award at all.

My sympathy is for those who failed to achieve recognition for their accomplishments, and I share
Dostoyevsky’s philosophy that suffering is necessary for spiritual achievement, but the price to be paid is
sometimes too high. However, an individual who gives his heart to create should not look for fame. This was
expressed with great emotion by Pasternak (1960) in his famous verse “To Be That Famous Is Hardly
Handsome”:

Creation’s aim—yourself to give,
Not loud success, appreciation.

To mean round nothing—shames to live,
On all men’s lips an empty sermon.

I sympathize with the heroes of Pasternak’s verse.
Although J. Henry Fabre’s area of activity was different from the author’s, he is an example of someone whose

life deeply touched the author. Fabre (1949) was a famous entomologist who exemplified the unconditional
devotion that creativity required. He was very poor, and struggled to support his family. However, every day
he was in the field to observe the social life and habits of insects—the subject of his research. He made a modest
confession that all he wanted was “a bit of land, oh, not so very large, but fenced in” where he could study insects.
Fabre puzzled not only his neighbors but also his contemporaries by spending his time studying insects, but
through his devotion to this subject, he became the founder of entomology. Unfortunately, Fabre became known
only at the end of his long life (1823 to 1915), and he received a pension for only his last 5 years.
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Another example is the Italian mechanic and clockmaker Juanelo Torriano (1501 to 1575), the inventor of
the first known gear cutting machine (Dudley, 1969). He spent 20 years on this project and paid a high price
for his intensive work. He was sick twice and almost died before he successfully created his manually operated
machine. Maybe his reward was self-satisfaction.

The theory and technology of gearing is a narrow branch of science, but the author believes that what was
said about the creative process holds true here. Who knows how many sleepless nights an inventor, a scientist,
or the founder of a new gear company had? How often did they ponder Hamlet’s question “To be or not to be?”
Recognizing the achievements of one’s predecessors is the best way to honor their work. This is one of the goals
of this book written in memory of the founders of the gear industry and gear technology and theory.

The author is very thankful for Dr. S. A. Lagutin’s and Dr. P.-H. Feng’s invaluable help in the preparation
of this book for publication. The author feels a deep gratitude to the skillful and intellectual members
of the NASA Lewis publishing department, J. Berkopec, D. Easter, M. Grimes, J. Jindra, A. Crawford,
N. Mieczkowski, L. Feher, and F. Turner, for their high-quality editorship of the book.

Faydor L. Litvin
The University of Illinois
at Chicago
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Chapter 1

Development of Theory of Gearing

1.1 Introduction

The theory of gearing is the branch of science related to differential geometry, manufacturing, design,
metrology, and computerized methods of investigation. The first developers of the theory of gearing (Olivier
and Gochman) related it to projective and analytical geometry. Later, with the development of gear technology
and the application of computers to gearing, researchers modified it to the modern theory of gearing and
extended its methodology and industrial applications.

One of the most important problems the theory of gearing considers is the conjugation of profiles in planar
gearing and surfaces in spatial gearing. De la Hire, Poncelet and Camus (Seherr-Thoss, 1965) deserve credit for
developing cycloidal gearing. Euler (1781), in addition to his tremendous contribution to mathematics and
mechanics, proposed involute gearing that was later found to have a broad application in industry (fig. 1.1.1).
The Swiss government issued currency with
Euler’s picture and an involute curve to
celebrate his achievements. Olivier (1842)
and Gochman (1886) developed the basic
ideas underlying the conjugation of gear
tooth surfaces and their generation. N.I.
Kolchin (1949) applied Gochman’s ideas
to develop the geometry of modern gear
drives.

Willis, Buckingham, Wildhaber, and
Dudley are very well-known names in
English-speaking countries. Willis (1841)
proposed the law of meshing of planar
curves. Buckingham’s book (1963) became
a well-known reference on gears.
Wildhaber, an inventor who held many
patents, developed the theory of hypoid
gear drives and the Revacycle method
(Wildhaber, 1926, 1946a, 1946b, 1946c,
1956). Dudley (1943, 1954, 1961, 1962,
1969, 1984, 1994) was the chief editor of
the first edition of the Gear Handbook,
the foremost work on gears at that time.
He became a prominent gear expert and
well known for his contributions to gear
technology.

Figure 1.1.1.—Leonhard Euler.
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The former U.S.S.R. conducted intensive gear research. In the 1940’s and 1950’s, Profs. Chrisanf F. Ketov,
N. I. Kolchin, V.A. Gavrilenko, and others supervised the research activities of many graduate students. The
author, one of these students, remembers with gratitude and respect his advisor, Prof. Ketov. A few of the many
distinguished Russian researchers from this generation are V.N. Kudriavtsev, G.I. Sheveleva,
L.V. Korostelev, Ya. S. Davidov, and M.L. Erikhov. Several research centers in Western countries have
contributed to the areas of gear geometry, technology, and dynamics:

(1) The Gleason Works in Rochester, New York; the NASA Lewis Research Center in Cleveland, Ohio; The
Ohio State University in Columbus, Ohio; the University of Illinois in Chicago, Illinois (United States)

(2) The Universities of Munich, Aachen, Stuttgart, and Dresden (Germany)
(3) Institute de L’Engrenage et des Transmissions and Cetim (France)
(4) The Universities of Laval and Alberta (Canada)

Important contributions to the theory of gearing have been provided by

(1) E. Buckingham (1963), E. Wildhaber (1926,1946, 1956), D. Dudley (1943, 1954, 1961, 1962, 1969, 1984,
1991), M. Baxter (1961, 1973), T. Krenzer (1981), A. Seireg (1969), G. Michalek (1966), and Y. Gutman
from the United States

(2) G. Niemann (1953), G.R. Brandner (1983, 1988), H. Winter, B. Hohn, M. Weck, and G. Bär (1991, 1997)
from Germany

(3) H. Stadtfeld (1993, 1995) formerly of Switzerland but now in the United States
(4) G. Henriotte and M. Octrue from France
(5) C. Gosselin (1995) and J.R. Colbourne (1974, 1985) from Canada

This chapter presents the latest developments in the theory of gearing. These resulted from the work of the
author and his fellow researchers at the University of Illinois Gear Research Laboratory in Chicago.

We are on the eve of the 21st century and can expect that technology such as the CNC (computer numerically
controlled) and CCM (computer coordinate measurement) machines will substantially change existing gear
geometry and gear technology.

1.2 Equation of Meshing

The generation of a gear tooth surface by the tool surface (the surface of a head-cutter, hob, shaper, rack-cutter,
etc.) and the conjugation of gear tooth surfaces in line contact are based on the concept of the envelope to a family
of surfaces (curves in two-dimensional space in the case of planar gearing). This topic is related to differential
geometry and to the theory of gearing. Zalgaller’s book (1975) significantly contributes to the theory of
envelopes and covers the necessary and sufficient conditions for the envelope’s existence. Simplified
approaches to the solution of these problems have also been developed in the theory of gearing (Litvin, 1968,
1989).

In further discussions, we use the notations Σ1 and Σ2 for the generating and generated surfaces, respectively.
The applied coordinate systems are designated by S1, S2, and Sf, which are rigidly connected to Σ1, Σ2, and to
the fixed frame of the machine (housing) where the axes of rotation of Σ1 and Σ2 are located.

We consider that Σ1 is represented as

r
r r

1
1 1 1 0 1 2 1( , ) , , ( , ) ( . . )u C

u u
u Eθ ∂

∂
∂
∂

θ∈ × ≠ ∈

where (u,θ) are surface parameters, and C1 indicates that vector function r1(u,θ) has continuous partial
derivatives of at least the first order. The inequality in (1.2.1) indicates that Σ1 is a regular surface.

Using the coordinate transformation from S1 to S2, we obtain the family of surfaces Σ1 represented in S2 as

r2 2 2 2 1 2 2( , , ) [ ( , , ), ( , , ), ( , , )] ( . . )u x u y u z u Tθ φ θ φ θ φ θ φ=
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where φ is the generalized parameter of motion. When φ is fixed, equation (1.2.2) represents the surface Σ1in
the S2 coordinate system.

Envelope Σ2 is in tangency with all surfaces of the family of surfaces (eq. (1.2.2)). Surface Σ2 can be
determined if vector function r2(u,θ,φ) of the family of surfaces will be complemented by

f u( , , ) ( . . )θ φ = 0 1 2 3

In 1952 in the theory of gearing, equation (1.2.3) had received  the term “equation of meshing” (Litvin, 1952).
Several alternative approaches have since been proposed for the derivation of equation (1.2.3).

Approach 1. The method of deriving the equation of meshing was proposed in differential geometry and is
based on the following considerations:

(1) Assume that equation (1.2.3) is satisfied with a set of parameters P(u°, θ°, φ°). It is given that  f  ∈ C1 and
that one of the three derivatives (fu, fθ , fφ), say fu, is not equal to zero. Then, in accordance with the theorem
of implicit function system existence (Korn and Korn, 1968), equation (1.2.3) can be solved in the neighbor-
hood of P = (u°,θ°,φ°) by function u(θ,φ).

(2) Consider now that surface Σ2 may be represented by vector function r2(θ,φ,u(θ,φ)) and that the tangents
to Σ2 may be represented as

T
r r

T
r r

2
2 2 2 2 1 2 4= + = +∂

∂θ
∂
∂

∂
∂θ

∂
∂φ

∂
∂

∂
∂φu

u

u

u
, ( . . )2

*

(3) The normal N2
(1) to surface Σ1 that is represented in S2 is determined as

N
r r

2
(1) = ×∂

∂
∂
∂θ

2 2 1 2 5
u

( . . )

The subscript 2 in the designation N2
(1) indicates that the normal is represented in S2; the superscript (1)

indicates that the normal to Σ1 is considered.

(4) If the envelope Σ2 exists, it is in tangency with Σ1, and Σ1 and Σ2 must have a common tangent plane. A
tangent plane Π2

(2) to Σ2 is determined by the couple of vectors T2 and T2*. A tangent plane Π2
(1) to Σ1 is

determined by the couple of vectors ∂ ∂r2/ u  and ∂ ∂θr2/ . Vector T2 lies in plane Π2
(1) already. Surfaces Σ2 and

Σ1 will have a common tangent plane if vector ∂ ∂φr2/ also lies in Π2
(1). The requirement that vectors

∂ ∂ ∂ ∂θ ∂ ∂φr r r2 2 2/ /u /, and( ) belong to the same plane Π2
1( )( ) is represented by

∂
∂

∂
∂θ

∂
∂φ

θ φr r r22 2 0 1 2 6
u

f u×





⋅ = =( , , ) ( . . )

Remember that (1.2.6) is the equation of meshing and that equations (1.2.2) and (1.2.6) considered
simultaneously represent surface Σ2, the envelope to the family of surfaces Σ1.

Approach 2. This approach is based on the following considerations:

(1) The cross product in equation (1.2.6) represents in S2 the normal to Σ1 (see eq. (1.2.5)).
(2) The derivative ∂ ∂φr2/ is collinear to the vector of the relative velocity v2

(12), which is the velocity of a
point of Σ1 with respect to the coinciding point of Σ2. This means that equation (1.2.6) yields

N v2
(1)

2
(12)⋅ = =f u( , , ) ( . . )θ φ 0 1 2 7

(3) The scalar product in (1.2.7) is invariant to the coordinate systems S1, Sf, and S2. Thus

N v ii
(1)

i
(12)⋅ = = =f u f( , , ) ( , , ) ( . . )θ φ 0 1 2 1 2 8
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The derivation of the equation of meshing becomes more simple if i = 1, or i = f.
Equation (1.2.8) was proposed almost simultaneously by Dudley and Poritsky, Davidov, Litvin, Shishkov,

and Saari. Litvin has proven that equation (1.2.8) is the necessary condition for the envelope’s existence (Litvin,
1952 and 1989).

The determination of the relative velocity v(12) can be accomplished using well-known operations applied
in kinematics (see appendix A). In the case of the transformation of rotation between crossed axes, an alternative
approach for determining v(12) may be based on the application of the concept of the axis of screw motion
(appendix B).

In the case of planar gearing, the derivation of the equation of meshing may be represented as

T v 0i i
( ) ( . . )1 1 2 9× =(12)

or

T v ki i i i f(1) (12)×( ) ⋅ = =0 1 2 1 2 10, ( , , ) ( . . )

where, T i
(1) is the tangent to the generating curve, vi

(12) is the sliding velocity, k i is the unit vector of the zi-axis
(assuming that the planar curves are represented in plane (xi, yi)).

In the cases of planar gearing and gearing with intersected axes, the normal to the generating curve (surface)
at the current point of tangency of the curves (surfaces) passes through (1) the instantaneous center of rotation
for planar gearing (first proposed by Willis (1941)), and (2) the instantaneous axis of rotation for gears with
intersected axes. The derivation of the equation of meshing for gearing with intersected axes is based on

X x Y y Z z
i fi i

x

i i

y

i i

zi i i

− = − = − =
N N N( ) ( ) ( ) , ( , , ) ( . . )1 1 1 1 2 1 2 11

where (Xi, Yi, Zi) are the coordinates of a current point of the instantaneous axis of rotation; (xi, yi, zi) are the
coordinates of a current point of the generating (driving) surface; N N Nx y zi i i

( ) ( ) ( ), ,1 1 1  are the projections of the
normal to surface Σ1.

1.3 Basic Kinematic Relations

Basic kinematic relations proposed in Litvin (1968 and 1989) relate the velocities (infinitesimal displace-
ments) of the contact point and the contact normal for a pair of gears in mesh.

The velocity of a contact point is represented as the sum of two components: in the motions with and over
the contacting surface, respectively. Using the condition of continuous tangency of the surfaces in mesh, we
obtain

v v vr r
(2) (1)= + ( ) ( . . )12 1 3 1

where vr
(i) (i = 1,2) is the velocity of a contact point in the motion over surface Σi. Similarly, we can represent

the relation between the velocities of the tip of the contact normal

˙ ˙ ( . . )( )n n nr r
(2) (1)= + ×( )ωω 12 1 3 2

where, ̇ ( )nr
i (i = 1,2) is the velocity of the tip of the contact normal in the motion over the surface (in addition

to the translational velocity of the unit normal n that does not affect the orientation of n), and ω(12) is the relative
angular velocity of gear 1 with respect to gear 2.

The advantage in using equations (1.3.1) and (1.3.2) is that they enable the determination of vr
(2) and ṅr

(2)

without having to use the complex equations of the generated surface Σ2.
By applying equations (1.3.1) and (1.3.2) for the solutions of the following most important problems in the

theory of gearing, the application of the complex equations of Σ2 has been avoided:
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Problem 1: Avoidance of singularities of the generated gear tooth surface Σ2
Problem 2: Determination of the principal curvatures, the normal curvatures, and the surface torsions of Σ2
Problem 3: Determination of the dimensions and the orientation of the instantaneous contact ellipse

1.4 Detection and Avoidance of Singularities of Generated Surface

Generating tool surface Σ1 is already free from singularities because the inequality (∂r1/∂u) × (∂r1/∂θ) ≠ 0
was observed. Tool surface Σ1 may generate surface Σ2, which will contain not only regular surface points but
also singular ones. The appearance of singular points on Σ2 is a warning of the possible undercutting of Σ2 in
the generation process.

The discovery of singular points on Σ2 may be based on the theorem proposed in Litvin (1968): a singular
point M on surface Σ2 occurs if at M the following equation is observed:

v v v 0r r
( ) ( ) ( ) ( . . )2 1 12 1 4 1= + =

Equation (1.4.1) and the differentiated equation of meshing

d

dt
f u( , , ) ( . . )θ ψ[ ] = 0 1 4 2

yield

∂
∂

∂
∂θ

θr r
v1 1

1 1 4 3
u

u

t t

d

d

d

d
+ = − (12) ( . . )

∂
∂

∂
∂θ

θ ∂
∂φ

φf

u

u

t

f

t

f

t

d

d

d

d

d

d
+ = − ( . . )1 4 4

Taking into the account that Σ1 is a regular surface, we may transform (1.4.3) as

∂
∂

∂
∂

∂
∂θ

θ ∂
∂

r r r r
v1

2
1 1 1

1
12 1 4 5

u

u

t u t u






+ 





⋅ 





= −





⋅ ( )d

d

d

d
( ) ( . . )

∂
∂θ

∂
∂

∂
∂θ

θ ∂
∂θ

r r r r
v1 1 1

2
1

1
12 1 4 6





⋅ 





+ 





= −





⋅ ( )
u

u

t t

d

d

d

d
( ) ( . . )

Equations (1.4.4) to (1.4.6) form an overdetermined system of three linear equations in two unknowns:
du/dt, dθ/dt. The rank of the system matrix is r = 2, which yields

g u

f f f

u u u

u

u

1
1

2
1 1 1 12

1 1 1
2

1

( , , ) ( )θ φ ∂
∂

∂
∂

∂
∂θ

∂
∂

∂
∂θ

∂
∂

∂
∂θ

∂
∂θ

θ φ

= 











⋅ 











⋅ ( )






⋅ 

















⋅

r r r r
v

r r r r
v(( )

( . . )

12

0 1 4 7

( )
=

We have assigned in v(12) that dφ/dt = 1 rad/sec.
Equations f = 0 and g1 = 0 allow us to determine on Σ1 curve L1, which is formed by surface “regular” points

that generate “singular” points on Σ2. Using the coordinate transformation from S1 to S2, we may determine
curve L2, which is formed by singular points on surface Σ2. To avoid the undercutting of Σ2, it is sufficient to
limit Σ2 and to eliminate L2 while designing the gear drive.

It is easy to verify that the theorem proposed above yields a surface normal N2
(2) equal to zero at the surface

Σ2 singular point. The derivations procedure follows:
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Step 1: Equation (1.4.7) means that

g u
u1 1

2 1 1 1 4 8( , , ) ( . . )( )θ φ ∂
∂

∂
∂θ

= ⋅ ×





N
r r

where

N
r

v v
r r r

1
2 1 12 12 1 1 1 1 4 9( ) ( ) ( . . )= ×





+ ×





+ ×





∂
∂θ

∂
∂

∂
∂

∂
∂θθ φf

u
f

u
fu

Step 2: Taking into account that the generating surface Σ1 performs its relative motion as a rigid body (Σ1 is
not changed during such a motion), we may represent in coordinate system S2 the normal to surface Σ2 as

N
r r r r r r

2
2 2 2 2 2 2 2 1 4 10( ) ( . . )= ×







+ ×






+ ×





∂
∂θ

∂
∂φ

∂
∂φ

∂
∂

∂
∂

∂
∂θθ φf

u
f

u
fu

Step 3: Equation g1 = 0 yields N1
(2) = 0, since 

∂
∂

∂
∂θ

r r1 1

u
×



  ≠ 0 (see eq. (1.4.8)). Respectively, we obtain

N2
(2) = 0. This means that equation (1.4.10) also yields a normal to surface Σ2 that is equal to zero.

Step 4: We may easily verify that the surface Σ2 singularity equation can be represented in terms of Σ2:

g u

f f f

u u u

u

u

2
2

2
2 2 2 2

2 2 2
2

2

( , , )θ φ ∂
∂
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∂

∂
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∂
∂
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∂
∂θ

∂
∂

∂
∂θ

∂
∂θ

θ φ
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⋅ 











⋅ 











⋅ 














r r r r r

r r r r 


⋅






=

∂
∂φ
r2

0 1 4 11( . . )

However, equation (1.4.7) is much simpler and therefore preferable.
We illustrate the phenomenon of undercutting with the generation of a spur involute gear by a rack-cutter

(figs. 1.4.1 to 1.4.3). The rack-cutter (fig. 1.4.1) consists of a straight line 1 that generates the involute curve
of the gear, a straight line 2 that generates the dedendum circle of the gear, and the rack fillet that generates the
gear fillet.

Fillet
2

1

Figure 1.4.1.—Profiles of rack-cutter tooth.
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Figure 1.4.2 shows the generation of a spur gear by the rack-cutter. The rack-cutter setting is determined by
parameter a. The two rack-cutter positions are designated I and II. At position II, the regular point F  of the
rack-cutter’s profile generates a singular point L of the involute profile; point L is the intersection of the involute
profile with the base circle. The appearance of a singular point on the generated profile heralds an undercutting.
The magnitude of parameter a shown in the figure is the limiting one.

Figure 1.4.3(a) shows the family of shapes of the rack-cutter and the tooth profiles of the generated gear when
parameter a is less than the limiting one. The involute part of the gear tooth profile is free from a singular point,
the gear fillet and the involute curve are in tangency, and the gear tooth is not undercut.

(a)

Figure 1.4.3.—Generation of involute curve by rack-cutter. (a) Family of shapes of rack-cutter and
   tooth profiles of generated gear with parameter a less than limiting one. (b) Gear involute shape
   undercut by fillet of rack-cutter.

(b)

Figure 1.4.2.—Determination of limiting setting of a
   rack-cutter.

Pitch circle

Base circle

Position I

Position II

Gear fillet

L
F D

Rack
fillet

ac

ac

ac

I aa

a
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Figure 1.4.3(b) shows that the fillet of the rack-cutter has undercut the gear involute shape: the gear fillet and
involute shape are no more in tangency but intersect each other. The undercutting occurred as a result of the
magnitude of parameter setting a being too large.

Examples of the application of equation (1.4.7) in order to avoid undercutting are presented in Litvin (1989
and 1994).

1.5 Direct Relations Between Curvatures of Meshing Surfaces:
Instantaneous Contact Ellipse

The solutions to these related problems are based on the application of the proposed kinematic relations
discussed in section 1.3.

Direct relations between the curvatures of meshing gears are necessary for the local synthesis of gear tooth
surfaces, the determination of an instantaneous contact ellipse, and other problems. The main difficulty in
solving such problems is that the generated surface Σ2 is represented by three related parameters, therefore
making the determination of the curvatures of Σ2 a complex problem. The approach proposed by Litvin (1968,
1969, 1994) enables one to overcome this difficulty because the curvatures of Σ2 are expressed in terms of the
curvatures of generating surface Σ1 and the parameters of motion. Using this approach makes it possible to
determine the direct relations between the principal curvatures and the directions of Σ1 and Σ2. An extension
of this approach has enabled one to detemine the relations between normal curvatures of surfaces Σ1 and Σ2 and
the torsions (Litvin, Chen, and Chen, 1995). The solution is based on the application of equations (1.3.1) and
(1.3.2) and on the differentiated equation of meshing.

The developed equations allow one to determine the relationship between the curvatures of surfaces in line
contact and in point contact.

The possibility of the interference of surfaces in point contact may be investigated as follows. Consider that
two gear tooth surfaces designated Σp and Σg are in point tangency at point M. The principal curvatures and
directions of Σp and Σg are known. The interference of surfaces in the neighborhood of point M will not occur
if the relative normal curvature κn

(r) does not change its sign in any direction in the tangent plane. Here,

κ κ κn
r

n
p

n
g( ) ( ) ( ) ( . . )= − 1 5 1

We are reminded that the normal curvature of a surface can be represented in terms of the principal curvatures
in Euler’s equation.

2a

2b

Figure 1.5.1.—Instantaneous contact ellipse.

M

q(1)

s

e(g)
I

e(p)
I
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The approach presented in Litvin (1994) and in Litvin, Chen, and Chen (1995) enables one to determine the
dimensions of the contact ellipse and its orientation by knowing the principal curvatures and directions of the
contacting surfaces and the elastic deformation of the tooth surfaces. An alternative approach is based on the
application of the surface normal curvatures, their torsions, and the tooth elastic approach (Litvin, Chen, and
Chen, 1995).

Figure 1.5.1 shows the instantaneous contact ellipse and its center of symmetry, which coincides with the
point of tangency M; the unit vectors eI

(p) and eI
(g) of the respective principal directions; the major and minor

axes of the contact ellipse 2a and 2b; angle q(1), which determines the orientation of the contact ellipse with
respect to the unit vector eI

(p); angle σ, which is formed by unit vectors eI
(p) and eI

(g).

1.6 Sufficient Conditions for Existence of Envelope to Family of
Surfaces

Sufficient Conditions for Existence of Envelope to Family of Surfaces Represented in Parametric
Form

The sufficient conditions for the existence of an envelope to a family of surfaces guarantee that the envelope
indeed exists, that it be in tangency with the surfaces of the family, and that it be a regular surface. These
conditions are represented by the following theorem proposed by Zalgaller (1975) and modified by Litvin
(1968, 1994) for application in the theory of gearing.

Theorem. Given a regular generating surface Σ1 represented in S1 by

r
r r

1
2 1 1 0 1 6 1( , ) , , ( , ) ( . . )u C

u
u Eθ ∂

∂
∂
∂θ

θ∈ × ≠ ∈

The family Σφ of surfaces Σ1 generated in S2 is represented by r2(u, θ, φ), a < φ < b.
Suppose that at a point M (u0, θ0, φ0), the following conditions are observed:

∂
∂

∂
∂θ

∂
∂φ

θ φr r r2 2 2 10 1 6 2
u

f u f C×





⋅ = = ∈( , , ) ,      ( . . )
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⋅
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v

r r r r
v(( )

( . . )

12

0 1 6 5

( )
≠

Then, the envelope to the family of surfaces Σ1 exists in the neighborhood of point M and may be represented
by
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r2( , , ), ( , , ) ( . . )u f uθ φ θ φ = 0 1 6 6

The contact lines of Σ2 and Σ1 are represented as

r2( , , ), ( , , ) ,      ( . . )u f uθ φ θ φ φ= =0 1 6 7Constant

r1( , ), ( , , ) ,      ( . . )u f uθ θ φ φ= =0 1 6 8Constant

Figure 1.6.1 shows contact lines on surface Σ1 determined by equations (1.6.8) while constant values of
φ = (φ(1), φ(2),…) were taken.

The tangent to the contact line is represented in S2 and S1 by

T
r r

2
2 2 1 6 9= −∂

∂
∂
∂θθu

f fu ( . . )

and

T
r r

1
1 1 1 6 10= −∂

∂
∂
∂θθu

f fu ( . . )

The surface of action is the family of contact lines in the fixed coordinate system Sf that is rigidly connected
to the frame. The surface of action is represented by

r rf f u f u= =( , , ), ( , , ) ( . . )θ φ θ φ 0 1 6 11

where

y1

z1

x1

O1

Figure 1.6.1.—Contact lines on tooth surface.

M*
M

f
(1)

f
(2)

S1
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r M rf fu u( , , ) ( ) ( , ) ( . . )θ φ φ θ= 1 1 1 6 12

The 4×4 matrix M f1 describes the coordinate transformation in transition from S1 to Sf.

Sufficient Conditions for Existence of Envelope to Family of Surfaces Represented in Implicit Form

The family of generating surfaces in S2 is

G x, y, z G C G G Gx y z( , ) , , ( ) ( ) ( ) ( . . )φ = ∈ + + ≠0 0 1 6 132 2 2 2

( ) ,x, y, z A a b∈ < <φ

The theorem of sufficient conditions for the envelope existence proposed by Zalgaller (1975) states that at point
M (u0, θ0, φ0), the following requirements are observed:

G x , y , z , G G( ) , , ,0 0 0 0 0 0 0φ φ φφ= = ≠

∆ = + + ≠
D G G

D x y

D G G

D x z

D G G

D y

( , )

( , )

( , )

( , )

( , )

( , )
( . . )

φ φ φ
z

0 1 6 14

Thus, the envelope exists locally in the neighborhood of point M and is a regular surface:

G x, y, z G x, y, z( , ) , ( , ) ( . . )φ φφ= =0 0 1 6 15

The surface of action for the case just discussed can be represented by using equations similar to (1.6.11) and
(1.6.12).

1.7 Envelope E2 to Contact Lines on Generated Surface Σ2 and Edge of
Regression

Sufficient Conditions for Existence of Envelope E2 to Contact Lines

Singular points on generated surface Σ2 may form a curve that is the envelope (designated E2) to the family
of contact lines (characteristics) on Σ2. Envelope E2 is simultaneously the “edge of regression” of Σ2, which
means that envelope E2 is simultaneously the common line of two branches of Σ2 determined by the same
equation. If the conditions necessary for the existence of E2 as an envelope are not satisfied, singular points on
generated surface Σ2 just form an edge of regression.

Sufficient conditions for the existence of E2 to a family of contact lines on generated surface Σ2 represented
by an implicit function were determined by Favard (1957). In this work, it was proven that envelope E2 is also
the edge of regression.

Our goal is to present the sufficient conditions for the existence of E2 to a family of contact lines on generated
surface Σ2 that is determined parametrically by three related parameters. In addition, we will show that E2, if
it exists, is also the edge of regression.

Sufficient conditions for the existence of E2 are formulated by the following theorem based on investigations
conducted by Zalgaller (1975), Zalgaller and Litvin (1977), and Litvin (1975).
Theorem. A family of generated surfaces Σφ is considered:

r2( , , ) , ( , ) ,      ( . . )u C u G a bθ φ θ φ∈ ∈ < <3 1 7 1

The family Σφ is generated by surface Σ1 represented by
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r
r r

1( , ) , ( . . )u C
u

θ ∂
∂

∂
∂θ

∈ × ≠3 1 1 0 1 7 2

The following conditions are observed at point M(u0, θ0, φ0):
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0 1 7 6= ≠
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θ φ

θ φ

1 1
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f f f
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( . . )

Thus, the envelope E2 exists locally at point M(u0, θ0, φ0) and is within the neighborhood of M. Envelope
E2 is a regular curve and is determined by

r r2 2 0 0 1 7 7= = =( , , ),      ( , , ) ,      ( , , ) ( . . )u f u g uθ φ θ φ θ φ

The tangent to E2 is collinear to tangent T2 to the contact line at point M of the tangency of E2 and T2. Envelope
E2 does not exist if at least one of the inequalities ((1.7.5) and (1.7.6)) is not observed.

The above theorem was applied by F.L. Litvin, A. Egelja, M. De Donno, A. Peng, and A. Wang to determine
the envelopes to the contact lines on the surfaces of various spatial gear drives.

Structure of Curve L on Generated Surface Σ2 Near Envelope E2

We consider curve L  on surface Σ2 that starts at point M of envelope E2 to the contact lines. Since M is a
singular point of surface Σ2, the velocity vr

(2) in any direction that differs from the tangent to E2 is equal to zero.
Therefore, we may expect that M is the point of regression. A detailed investigation of the structure of curve
L  requires that the Taylor series be applied to prove that M is the point of regression and that envelope E2 is
simultaneously the edge of regression.

Example 1.7.1. The generation of a helical involute gear by a rack-cutter is considered. The approach discussed
above is applied to determine the envelope E2 to the contact lines on the generated screw surface Σ2 and the edge
of regression.

Step 1: We apply coordinate systems S1, S2, and Sf that are rigidly connected to the rack-cutter, the gear, and
the frame, respectively (fig. 1.7.1).
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Step 2: The generating surface is plane Σ1 (fig. 1.7.2). The position vector O M1  of point M of the generating
plane is

O M O A O B1 1 1 1 7 8= + ( . . )

where O A O B u1 1= =θ   and .

Figure 1.7.1.—Coordinate systems applied for gener-
   ation of screw involute surface.

x1
xf

O1x2
y1

y2

yf

O2, Of

f

rp

rpf

v

M

B

A

Figure 1.7.2.—Generating plane:  O1A = u and  O1B = u.
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Then, we obtain the following equation for the generating plane Σ1:
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1 7 9( , )
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+


















The normal N1 to Σ1 is

N
r r

1
1 1 1 7 10= × =

−

−

















∂
∂

∂
∂θ

α λ
α λ
α λ

u

t p

t p

t p

sin sin

cos sin

cos cos

( . . )

Here, αt is the profile angle of the rack-cutter in the transverse section, and λp is the lead angle on the pitch
cylinder of radius rp of the helical gear.

Step 3: To derive the equation of meshing, we use the scalar product

N v N v v1 1
12

1 1
1

1
2 0 1 7 11⋅ = ⋅ ( ) = =( ) ( ) ( ) ( , , ) ( . . )– f u θ φ

Here (fig. 1.7.1)

v j1
1 1 7 12( ) ( . . )= −rp

v k r k1
2

1 1 1 2 1 1 7 13( ) ( . . )= × + ×O O

where k1 is the unit vector of the z1-axis. While deriving equations (1.7.12) and (1.7.13), we have taken
ω = 1 rad/sec.

After transformations, we obtain the equation of meshing

f u u rp t p( , , ) cos sin ( . . )θ φ λ α θ φ= + − = 0 1 7 14

Step 4: The generated surface Σ2, which is the envelope to the family of generating surfaces Σ1, is represented
in coordinate system S2 by

r r2 21 1 1 7 15( , , ) ( ) ( , ) ( . . )u uθ φ φ θ= M

f u( , , ) ( . . )θ φ = 0 1 7 16

where M21 is the matrix for the coordinate transformation from S1 to S2.
Equations (1.7.15) and (1.7.16) parametrically represent Σ2 by three related parameters as

x u u rt t p p2 1 7 17( , , ) cos cos sin sin cos cos sin ( . . )θ φ θ α φ φ θ α λ φ φ φ= − +( ) + +( )

y u u rt t p p2 1 7 18( , , ) cos sin cos sin cos sin cos ( . . )θ φ θ α φ φ θ α λ φ φ φ= + +( ) + −( )

z u u p2 1 7 19( ) sin ( . . )= λ

f u u rp t p( , , ) cos sin ( . . )θ φ λ α θ φ= + − = 0 1 7 20
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Step 5: Equation (1.7.4) of singularities yields

g u u r rp t p t p t1 0 1 7 21( , , ) cos cos cos sin ( . . )θ φ λ α φ α α= − + + =

Step 6: The conditions for the existence of envelope E2 to contact lines on Σ2 formulated by the above theorem
are satisfied in the case discussed; particularly, there are observed inequalities (1.7.5) and (1.7.6). Therefore,
envelope E2 indeed exists and is determined by

r2 10 0 1 7 22( , , ),      ( , , ) ,      ( , , ) ( . . )u f u g uθ φ θ φ θ φ= =

Equations (1.7.17) to (1.7.22) yield envelope E2, the helix on the base cylinder of radius rb, and the lines of
contact, tangents to the helix (fig. 1.7.3(a)) that is represented by

x rb t2 1 7 23= +cos( ) ( . . )α φ

y rb t2 1 7 24= +sin( ) ( . . )α φ

z p t2 1 7 25= +( tan ) ( . . )φ α

where rb = rp cos αt, the screw parameter p = rp tan λp.
Two branches of the generated surface are shown in figure 1.7.3(b).

Step 7: The generation of a spur gear may be considered a particular case of the generation of a helical gear by
taking λp = 90°. In such a case, envelope E2 to the contact lines does not exist since inequality (1.7.5) is not
observed. Only the edge of regression exists, as shown in figure 1.7.4.

Figure 1.7.3.—Involute helical gear. (a) Contact lines and envelope to contact lines. (b) Surface
   branches.

(b)

Surface branches

rb

Envelope
to contact
lines

(a)

rb

Contact lines
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1.8 Necessary and Sufficient Conditions for Existence of Envelope E1 to
Contact Lines on Generating Surface Σ1

Necessary Condition

Contact lines on generating surface Σ1 may also have an envelope E1. This envelope divides the generating
surface into two parts: A, which is covered with contact lines, and B, which is empty of contact lines (fig. 1.8.1).
Envelope E1 was discovered by Litvin (1975) and the necessary conditions for the existence of E1 were
formulated. In addition, sufficient conditions for the existence of E1 are formulated in this book.

The family of contact lines on Σ1 is represented in S1 by the expressions

r
r r

1
2 1 1 0 0 1 8 1( , ) ,    ,      ( , , ) ,      ( , ) ,      ( . . )u C

u
f u u G a bθ ∂

∂
∂
∂θ

θ φ θ φ∈ × ≠ = ∈ < <

The necessary condition for the existence of envelope E1 is fφ = 0. The proof is based on the following
considerations (Litvin, 1975):

(1) Vector δr1 of displacement along the tangent to a contact line may be represented by

δ ∂
∂

δ ∂
∂θ

δθ δ δθθr
r r

1
1 1 0 1 8 2= × + =
u

u f u fu,      ( . . )

(2) Vector dr1 of displacement along the tangent to envelope E1 may be represented by

d d d d dr
r r

1
1 1 0 1 8 3= + + + =∂

∂
∂
∂θ

θ θ φθ φu
u f u f fud ,      ( . . )

(3) Vectors δr1 and dr1 must be collinear if envelope E1 exists. This requirement is satisfied if fφdφ = 0,
which yields fφ = 0 (dφ ≠ 0 since φ is a varied parameter of motion).

Sufficient Conditions

The generating surface Σ1 is represented as

r
r r

1
2 1 1 0 1 8 4( , ) ,      ,      ( , ) ,      ( . . )u C

u
u G a bθ ∂

∂
∂
∂θ

θ φ∈ × ≠ ∈ < <

Figure 1.7.4.—Edge of regression of spur involute surface.

Branches
of Sr

Edge of
regression

Base
cylinder
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The following conditions are observed at a point (uo,θo,φo) designated M:

f u( , , ) ( . . )θ φ = 0 1 8 5

f uφ θ φ( , , ) ( . . )= 0 1 8 6

fφφ ≠ 0 1 8 7( . . )

f f

f f
u

u

θ

φ φθ
≠ 0 1 8 8( . . )

Then, envelope E1 exists, is a regular curve, and is determined by

r1 0 0 1 8 9( , ),      ( , , ) ,      ( , , ) ( . . )u f u f uθ θ φ θ φφ= =

The proof of the theorem of sufficient conditions is based on the following procedure:

Step 1: Consider the system of equations (1.8.5) and (1.8.6) and apply the theorem of implicit equation system
existence. We can solve these equations in the neighborhood of point (uo,θo,φo) by functions {u(φ), θ(φ)} ∈ C1

since inequality (1.8.7) is observed. Then, we may determine a curve on surface Σ1 to be

R r( ) ( ( ), ( )) ( . . )φ φ θ φ= 1 1 8 10u

Step 2: The tangent to curve R(φ) is determined as

∂
∂φ

∂
∂ φ

∂
∂θ

θ
φ

R r r= +1 1 1 8 11
u

d

d

d

d

u
( . . )

Step 3: We may determine the derivatives du/dφ and dθ/dφ as follows: differentiating equations (1.8.5) and
(1.8.6), we obtain

f
u

f fu
d

d

d

dφ
θ
φθ φ+ = − ( . . )1 8 12

f
u

f fuφ φθ φφφ
θ
φ

d

d

d

d
+ = − ( . . )1 8 13

Solving equations (1.8.12) and (1.8.13), we obtain du/dφ and dθ/dφ.
Equations (1.8.5), (1.8.10), and (1.8.11) to (1.8.13) yield

∂
∂φ

∂
∂

∂
∂θ

φφ

θ

φ φθ

θ
R r r= −





f

f f

f f

u
f f

u

u

u
1 1 1 8 14( . . )

Figure 1.8.1.—Envelope to contact lines.
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where

∂
∂

∂
∂θθ

r r
T1 1

1 1 8 15
u

f fu− = ( . . )

is the equation of the tangent to the contact line.
Equations (1.8.14) and (1.8.15) confirm that R(φ) is a regular curve (due to inequalities (1.8.7) and (1.8.8)

and T1 ≠ 0); the tangent ∂R/∂φ is collinear to tangent T1 to the contact line, and R(φ) is indeed the envelope to
the family of contact lines on Σ1.

Note 1: Equation (1.8.5) represents a family of planar curves in the space of parameters (u,θ). Using an
approach similar to that just discussed, it is easy to verify that fφ = 0, fφφ ≠ 0, and inequalities (1.8.7) and (1.8.8)
are the sufficient conditions for the existence of an envelope to the family of lines of contact between surfaces
Σ1 and Σ2 represented in the space (u,θ).

Note 2: The envelope E1 on Σ1 is a regular curve formed by regular points of Σ1. A point of E1 may generate
a singular point on Σ2 if and only if the relative velocity v1

(12) is collinear to the tangent ∂R/∂φ to the envelope
E1 on Σ1. This conclusion can be drawn from equation (1.4.9), which is represented after transformation as

N v
r r r r

v T
r r

1
2

1
12 1 1 1 1

1
12

1
1 1 1 8 16( ) ( ) ( ) ( . . )= × −





+ ×





× + ×





∂
∂

∂
∂θ

∂
∂

∂
∂θ

∂
∂

∂
∂θθ φ φu

f f
u

f
u

fu =

The normal N1
(2) to Σ2 may become equal to zero if fφ = 0 and v1

(12) is collinear to T1 (or T2), which is tangent
to the contact line.

Figure 1.8.2 shows contact lines and the envelope to such lines on the generating surface that is the worm
thread surface. The generated surface is the worm-gear tooth surface. Figure 1.8.3 shows the contact lines and
their envelope in the space of the worm surface parameters.

Figure 1.8.2.—Envelope to contact lines on worm
   surface.

Envelope

Contact lines
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1.9 Axes of Meshing

Initial Considerations

The concept of the axes of meshing and their derivation was first presented by Litvin in 1955 and was then
published in the works (Litvin, 1968, 1989). The revised and complemented concept is now presented in this
book.

We consider that a gear drive transforms rotations with angular velocities ω(1) and ω(2) between crossed axes.
The angular velocities ω(1) and ω(2) lie in parallel planes and form a crossing angle γ, with the shortest distance
between ω(1) and ω(2) being E (fig. 1.9.1).

The relative motion of gear 1 with respect to gear 2 is represented by vector ω(12) = ω(1) – ω(2) and by vector

moment m −( ) = × −( )ωω ωω( ) ( )2
2

2O O .f

A point M is the current point of tangency of gear tooth surfaces Σ1 and Σ2 if the following equation (the
equation of meshing) is observed:

n v n r⋅ = ⋅ ×( ) + × ( )[ ]{ } =( ) ( ) ( )– ( . . )12 12
2

2 0 1 9 1ωω ωωO Of

where r  is the position vector of M, and n is the unit normal to surface Σ1. The normal N to surface Σ1 instead
of unit normal n may be applied in equation (1.9.1). Henceforth, we will consider that vectors in equation (1.9.1)
and those derived below are represented in the fixed coordinate system Sf (fig. 1.9.1).

It is known from kinematics that the same relative motion will be provided if vectors ω(1) and ω(2) are
substituted by vectors ω(Ι) and ω(I I ) and if the following conditions are observed:

(1) Vectors ω(Ι ) and ω(I I ) lie in planes Π (Ι ) and Π (II ), which are parallel to ω(1) and ω(2).
(2) Vectors ω(Ι) and ω(II ) are correlated and satisfy these equations:

ωω ωω ωω( ) ( ) ( )– ( . . )Ι II = 12 1 9 2

O O O O O Of f f
( ) ( ) ( ) ( ) ( )– – ( . . )
Ι Ι× + × ( ) = × ( )ωω ωω ωωII II

2 1 9 32

Figure 1.8.3.—Contact lines in space of surface
   parameters.
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General Concept of Axes of Meshing

A manifold of couples of vectors ω(Ι) and ω(II ) satisfy equations (1.9.2) and (1.9.3). We will consider a
submanifold of vectors ω(Ι) and ω(II ) that not only satisfy equations (1.9.2) and (1.9.3) but also satisfy the
requirement that the common surface normal N (or the unit normal n) intersect the lines of action L(Ι) and L(I I )

of ω(Ι) and ω(I I ) (fig. 1.9.2).
If the normal (unit normal) at point M intersects at least one of the couple of lines L(Ι) and L(II ), say L(Ι), it

is easy to prove that two equations of meshing are satisfied and that the normal intersects the other line, L(II ).
The proof is based on these considerations:

(1) An equation of meshing similar to equation (1.9.1) can be represented as

n v n v v⋅ = ⋅ ( ) =( ) ( ) ( )– ( . . )Ι Ι, II II 0 1 9 4

(2) If the normal intersects L(Ι), we can represent v(Ι) by

v( ) ( ) ( ) ( . . )Ι Ι Ι= ×ωω ρρ 1 9 5

where ρ(Ι) is a position vector drawn to M from any point on the line of action L(Ι). Not losing the generality,

ρ(Ι) can be represented as P M( )Ι , where P(Ι) is the point of intersection of L(Ι) and the extended unit normal n.

xf

zfOf

O2

yf

Figure 1.9.1.—Derivation of axes of meshing.
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E
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g
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Thus, we have

f uφ θ φ( , , ) ( . . )= 0 1 8 6

(3) Considering the scalar product n ⋅ v(Ι), we obtain

n v n n⋅ = ⋅ ×( ) =( ) ( ) ( ) ( . . )Ι Ι Ιωω λ 0 1 9 7

(4) Equations (1.9.4) and (1.9.7) yield

n v⋅ =( ) ( . . )II 0 1 9 8

The foregoing discussions mean that (a) if the surface normal at point M (the candidate for the point of
tangency of surfaces) intersects at least one line of the couple of lines L(i) (i = Ι,II ), it intersects the other line
as well; (b) two equations of meshing, (1.9.7) and (1.9.8), are satisfied simultaneously; and (c) point M is the
point of tangency of the surfaces if at least one equation of meshing of the couple (1.9.7) and (1.9.8) is satisfied.

We call lines L(Ι) and L(ΙΙ) the axes of meshing. However, we emphasize that the couple of lines L(Ι) and L(I I )

must satisfy not only equations (1.9.2) and (1.9.3) but also the requirement that L(Ι) and L(I I ) be intersected by
the surface normal. Lines L(Ι) and L(II ) that satisfy requirements (a) to (c) are called the axes of meshing.

Of

Figure 1.9.2.—Intersection of axes of meshing by the
   normal to the contacting surfaces.
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Correlation Between Parameters of Axes of Meshing

Our goal is to prove that the parameters of the axes of meshing are correlated, that they depend on the position
vector r  and the surface normal N, and that the solution for determining the parameters of L(Ι) and L(I I ) is not
unique.

The determination of the sought-for parameters of the axes of meshing is based on the following procedure:

(1) The axes of meshing lie in planes that are perpendicular to the xf -axis (fig. 1.9.1), and we designate the
sought-for parameters X(i), K(i) (i = Ι, II ). The algebraic parameter X(i) determines the location of O(i) on axis
xf ; parameter K(i) is determined as

K i z
i

y
i

( )
( )

( ) ( . . )= ω
ω

1 9 9

(2) The requirement that the surface unit normal pass through the axes of meshing is presented in the
following equations (Litvin, 1968):

X x

n

Y y

n

Z z

n
i ,

i

x

i

y

i

z

( ) ( ) ( )
( ) ( . . )

− = − = − = Ι II 1 9 10

Here (fig. 1.9.2)

O P X Y Z K Y i I O M x, y, z n ,n ,nf
i i i i i i

f x y z
( ) ( ) ( ) ( ) ( ) ( ), , , ; ( ); ( )= =( ) =( ) = = =II r n

where P(i) is the point of intersection of the normal with the axis of meshing.
After eliminating Y(i) in equations (1.9.10), we obtain

X K n X n K yn xn xn zn i , IIi i
y

i
z

i
x y z x

( ) ( ) ( ) ( ) ( ) ( . . )− + −( ) + − = =0 1 9 11Ι

Equation (1.9.11) yields

X K X K n X X n K K yn xny x y
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( . . )Ι Ι Ι Ι−( ) − −( ) + −( ) −( ) =II II II II

z 0 1 9 12

(3) Additional relations between parameters X(i), K(i) (i = Ι,I I ) can be obtained by using equations (1.9.2) and
(1.9.3). These equations yield the following four dependent scalar equations in the unknowns ωy

(Ι) and ωy
(II ):

ω ωy y
( ) ( ) sin ( . . )Ι − =II –m21 1 9 13γ

K K my
I

y
( ) ( ) ( ) ( ) – cos ( . . )Ι ω ω− =II II 1 1 9 1421 γ

X K X K Em( ) ( ) ( ) ( ) ( ) ( ) cos ( . . )Ι Ι Ιω ωy y− =II II II
21 1 9 15γ

X X Emy y
( ) ( ) ( ) ( ) sin ( . . )Ι Ιω ω− =II II

21 1 9 16γ

While deriving these equations, we assign the value of ω(1) to be 1 rad/sec and ω(2) to be  m21 rad/sec, where
m21 is the gear ratio. The system of equations (1.9.13) to (1.9.16) in the unknowns ωy

(Ι) and ωy
(II ) may exist if

the rank of matrix
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1 1

1
1 9 17

21

21

21

21

– – sin

– – cos

– cos

– sin

( . . )
( )

( ) ( ) ( )

( )

m

K K m

X K X K Em

X X Em

γ
γ

γ
γ

( )

( )

( )

Ι

Ι Ι

Ι

II

II II

II





















is two.
Taking into consideration that in matrix (1.9.17) the four respective determinants of the third order are equal

to zero, we obtain after transformations the relations

X
Em K

m K m
( )

( )

( )

cos sin

cos sin
( . . )Ι =

−( )
+

21
1 9 18

γ γ

γ γ

II

II1 – 21 21

X
Em K

m K m
( )

( )

( )

cos sin

cos sin
( . . )II =

−( )
+

21
1 9 19

γ γ

γ γ

Ι

Ι1 – 21 21

(4) By analyzing the system of equations (1.9.12), (1.9.18), and (1.9.19), we can conclude the following:

(1) The parameters X(i) K(i) (i = Ι, I I ) of the axes of meshing depend on the coordinates (x,y) of the contact
point of the surfaces and on the components of the surface normal (unit normal).

(2) Three equations relate four parameters of the axes of meshing. The solution for the parameters of the
axes of meshing is not unique, even when the point of tangency and the common normal to the contacting
surfaces are considered known. This means that for any instant of meshing, there is a manifold of the axes of
meshing. However, there are two particular cases of meshing when only a couple of the axes of meshing, but
not a manifold of such axes, exist and the parameters of the axes of meshing do not depend on the contact point
and the contact normal: case 1, where the rotation is performed between crossed axes and the surface of one of
the gears is the helicoid; case 2, where a helicoid is generated by a peripheral milling (grinding) tool whose
surface is a surface of revolution.

Case 1 has been applied in the analysis of the meshing of worm-gear drives with cylindrical worms, helicon
drives, face-gear drives with crossed axes, and some types of spiroid gear drives. Case 2 has been applied in
the generation of worms and helical gears by a peripheral cutting (grinding) disk.

Case 1 of axes of meshing.—The surface of one of the mating gears is a helicoid. To derive the parameters
of the axes of meshing, we apply equations (1.9.12) and (1.9.13) to (1.9.16) and require that the sought-for
parameters be independent with respect to the point of tangency of the mating surfaces.
 In the case of a helicoid, we have the following relation (Litvin, 1968):

yn xn pnx y z− = ( . . )1 9 20

where p is the screw parameter of the helicoid.
Equations (1.9.20) and (1.9.12) yield

X K X K n X K p X K p ny z
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )– – – ( . . )Ι Ι Ι Ι−( ) − ( ) ( )[ ] =II II II II 0 1 9 21

Equation (1.9.21) shows that the parameters of the axes of meshing do not depend on components of the surface
normal if these relations are observed:

X K X K( ) ( ) ( ) ( ) ( . . )Ι Ι = II II 1 9 22
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X K p X K p( ) ( ) ( ) ( )– – ( . . )Ι Ι = II II 1 9 23

Further derivations of X(i), K(i) (i = Ι, II ) are based on the application of equations (1.9.22) and (1.9.23) and
the system of equations (1.9.13) to (1.9.16). The procedure for deriving the parameters follows:

Step 1: Considering equations (1.9.22), (1.9.13), and (1.9.15), we obtain

X K X K E( ) ( ) ( ) ( ) – cot ( . . )Ι Ι = =II II γ 1 9 24

Step 2: Considering equations (1.9.14) and (1.9.16), we obtain after transformations

X pK X pK Em p my y
( ) ( ) ( ) ( ) ( ) ( ) sin ( cos ) ( . . )Ι Ι Ι−( ) − −( ) = − −ω ωII II II

21 211 1 9 25γ γ

Equations (1.9.25), (1.9.23), and (1.9.13) yield

Em p m

X pK
m i ,i i

21 21
21

1
0 1 9 26

sin ( )
sin ( ) ( . . )( ) ( )

γ γ− −
−

+ = = Ι II

Then, using equations (1.9.26) and (1.9.24), we obtain

K
E

p

m

m
K

E

p
i i( ) ( )cos

sin

cot
( . . )( ) − − −





+ =
2 21

21

1
0 1 9 27

γ
γ

γ

Step 3: The final equations for the determination of parameters X(i), K(i) of the couple of the axes of meshing
are

K
E

p

m

m

E

p

m

m

E

p
( )

.
cos

sin

cos

sin

cot
( . . )Ι = − −





+ − −





−












1

2

1 1

2

1 4
1 9 2821

21

21

21

2 0 5
γ

γ
γ

γ
γ

X
E

K
( )

( )
cot

( . . )Ι
Ι= − γ

1 9 29

K
E

p

m

m

E

p

m

m

E

p
( )

.
cos

sin

cos

sin

cot
( . . )II = − −





− − −





−












1

2

1 1

2

1 4
1 9 3021

21

21

21

2 0 5
γ

γ
γ

γ
γ

X
E

K
( )

( )
cot

( . . )II
II= − γ

1 9 31

In the case of an orthogonal gear drive, we have γ = π/2. To determine the expression for X(I I ) = 0/0, we use
the Lopithal rule (Korn and Korn, 1968). Then, we obtain the following equations for the axes of meshing
parameters:

K
E

p m
( ) ( . . )Ι = − 1

1 9 32
21

X ( ) ( . . )Ι = 0 1 9 33
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Figure 1.9.3.—Axes of meshing of orthogonal worm-gear
   drive. (a) In three-dimensional space. (b) In orthogonal
   projections.
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Figure 1.9.4.—Axes of meshing of nonorthogonal
   worm-gear drive with right-hand worm. (a) In three-
   dimensional space. (b) In orthogonal projections.
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Figure 1.9.5.—Generation of worm by peripheral tool.
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Figure 1.9.6.—Axes of meshing in case of helicoid
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The axes of meshing for a worm-gear drive with a cylindrical worm are shown in figures 1.9.3 and 1.9.4.
For a face-gear drive with crossed axes and with a pinion as a spur gear, we have to take p = ∞.
In this case, all contact normals are perpendicular to the pinion axis, and one of the axes of meshing lies in

the infinity.
Case 2 of axes of meshing.—We will consider the generation of a helicoid by a cutting or grinding disk. The

installment of the tool is shown in figure 1.9.5. Coordinate system So is rigidly connected to the frame. The
helicoid in the process of generation performs a screw motion about the zo-axis with the screw parameter p. We
may neglect the tool rotation since it is provided to obtain the desired cutting velocity and does not affect the
process of generation. Therefore, we may consider that systems Sc and So are rigidly connected during the
generation process. The crossing angle γc between the zc- and zo-axes is usually equal to the lead angle λp on
the helicoid pitch cylinder. The shortest distance is Ec.

There are two axes of meshing in this case: Ι - Ι coincides with the tool axis; II - II  lies in the plane that is
perpendicular to the shortest distance Ec (fig. 1.9.6). The shortest distance between the helicoid axis and the axes
of meshing II - II  is

a X p c= =o
( ) cot ( . . )II γ 1 9 36

1.10 Two-Parameter Enveloping

The motion of the generating surface Σ1 is determined with two independent parameters designated (φ,ψ),
and the family of surfaces Σ1 is represented in S2 as

r M r2 21 1 1 10 1( , , , ) ( , ) , ( . . )u uθ φ ψ φ ψ θ= ( )

The two equations of meshing for the case of two-parametric enveloping are determined as

N v N v( ) ( )
1 10 0 1 10 2⋅ = = ⋅ = =1 1

φ ψθ φ ψ θ φ ψf u g u( , , , ) ( , , , ) ( . . ),

Here, v1
(φ) ; v1

(12,φ), v1
(ψ) ; v1

(12,ψ) represent the sliding velocity when the respective parameter of motion
(φ or ψ) is fixed. The subscript 1 in equations (1.10.2) indicates that the respective vectors are represented in
coordinate system S1.

The two-parameter method of enveloping was discussed in Litvin, Krylov, and Erikhov (1975) and Litvin
and Seol (1996). It can be successfully applied when the tool has a feed motion in the generation processes, such
as hobbing, shaving, and grinding. We have to emphasize that in reality the generation of surfaces with feed
motion is a one-parameter enveloping process because the two parameters of motion, φ and ψ, are related by
the generating function ψ(φ). Using one-parameter enveloping makes it possible to determine the real surface
Σ2* and its deviation from the theoretical envelope Σ2 and to evaluate the influence of the feed motion (of
function ψ(φ)).

A detailed example of two-parameter enveloping is presented in appendix C.

1.11 Localization of Contact and Simulation of Meshing of Gear Tooth
Surfaces

The localization of gear tooth surface contact is achieved when point contact instead of line contact of the
surfaces is provided. This enables one to reduce the sensitivity of the gear drive to misalignment and to also
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avoid so-called edge contact. The localization can be achieved by the mismatch of gear tooth surfaces. The
Gleason Works engineers have successfully developed spiral bevel gears and hypoid gears with point contact
of the surfaces. A localized contact is provided for circular-arc helical gears (Novikov-Wildhaber gears) and
can be achieved for other types of gear drives by gear tooth surface crowning.

We consider a great achievement to be the computerized simulation of meshing and of gear tooth surfaces
in point contact accomplished by applying TCA (Tooth Contact Analysis) computer programs. The simulation
of the meshing of gear tooth surfaces is based on the conditions of continuous tangency of gear tooth surfaces
that are represented by the following equations

r rf j f ju q u q( ) ( )( , , , ) ( , , , ) ( . . )1
1 1 1

2
2 2 2 1 11 1θ φ θ φ=

n nf j f ju q u q( ) ( )( , , , ) ( , , , ) ( . . )1
1 1 1

2
2 2 2 1 11 2θ φ θ φ=

Equations (1.11.1) and (1.11.2) indicate that the contacting surfaces have at the current point of tangency
common position vectors r f

(i) and surface unit normals nf
(i), (i = 1,2). The coincidence of directions of the unit

normals for both surfaces can be provided by the proper order of cofactors in the cross products (∂r f
(i)/∂ui)

× (∂r f
(i)/∂θi), (i = 1,2). The gear tooth surfaces Σ1 and Σ2 are represented in the fixed coordinate systems Sf where

the axes of gear rotation are located; (ui, θi) (i = 1,2) are the surface parameters; φ1 and φ2 are the angles of gear
rotation; qj (j = 1,2,...) designate the parameters of assembly.

Equations (1.11.1) and (1.11.2) yield a system of only five independent nonlinear equations (in six

unknowns) since n nf f
( ) ( ) .1 2 1= =  These equations are represented as

f u u f C kk k1 1 1 2 2 2
10 1 5 1 11 3, , , , , , , ( , ) ( . . )θ φ θ φ( ) = ∈ =

One of the unknowns, say φ1, may be chosen as the input. Henceforth, we assume that equations (1.11.3) are
satisfied at a point

P u u0
1
0

1
0

1
0

2
0

2
0

2
0 1 11 4= ( ), , , , , ( . . )θ φ θ φ

and the Jacobian system at P0 differs from zero. Thus,

∆5
1 2 3 4 5

1 1 2 2 2
0 1 11 5=

( )
( ) ≠

D f f f f f

D u u

, , , ,

, , , ,
( . . )

θ θ φ

From the theorem of the existence of the implicit function system, it follows that equations (1.11.3) can be
solved in the neighborhood of P0 by functions

u u C1 1 1 1 2 1 2 1 2 1
1 1 11 6φ θ φ φ θ φ φ φ( ) ( ) ( ) ( ) ( )[ ] ∈, , , , ( . . )

By using equations (1.11.1) and (1.11.2) and functions (1.11.6), we can determine the paths of contact on
surfaces Σ1 and Σ2 and the transmission function φ2(φ1). The gear misalignment is simulated by the variation
of assembly parameters qj that will cause the shift in the paths of contact and the deviations of φ2 (φ1) from the
transmission function of an aligned gear drive. Note that a unique solution of equations (1.11.3) by functions
(1.11.6) exists only for the case of meshing by a point contact of surfaces. The Jacobian ∆5 becomes equal to
zero when the surfaces are in line contact.

This method of simulating the meshing of misaligned gear drives was proposed by Litvin and Guo (1962).
We must credit The Gleason Works researchers who developed and applied in industry the TCA computer
programs for hypoid gear and spiral bevel gear drives. Similar programs were developed later by Litvin and
Gutman (1981).

The numerical solution of nonlinear equations (1.11.3) is an iterative process based on the application of
computer programs (Dongarra et al., 1979 and Moré, 1980).
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1.12 Equation of Meshing for Surfaces in Point Contact

The computerized simulation of the meshing of gear tooth surfaces described in section 1.11 does not require
knowledge of the equation of meshing. However, it is possible to prove that equation (1.2.7) can also be
extended to apply in the case of surfaces in point contact.

Consider an aligned gear drive when the assembly parameters are observed. The differentiation of equation
(1.11.1) yields

∂
∂

∂
∂θ

θ ∂
∂φ

φ ∂
∂

∂
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θ ∂
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φr r r r r rf f f f f f
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t t t u

u

t t t
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( . . )
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d

d
1 1 1 2 2 2+ + = + +

It is easy to verify that the derivatives (∂r f
(i)/∂ui), (∂r f

(i)/∂θi) (i = 1,2) lie in the common tangent plane for
surfaces in tangency. Using the scalar product of the common surface normal Nf

(i) with both sides of equa-
tion (1.12.1), we obtain
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 ⋅ =

Taking into account that  (∂r f
(i)/∂φi) (dφi/dt) is the velocity v(i)

tr  of the surface point (in transfer motion with
the surface), we obtain

N v v N vf tr tr f f
( ) ( ) ( ) ( ) ( ) ( . . )1 1⋅ −( ) = ⋅ =1 2 12 0 1 12 3

This is the proof that the equation of meshing can also be applied for the case of the point contact of surfaces.
Similar derivations performed for a misaligned gear drive yield

N
r r r

f
f f f
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jq
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( . . )1
1 2d d d⋅ − −
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∂

1 2 2

0 1 12 4
1 2

which allows us to investigate the influence of gear misalignment. However, this equation can be applied when
the theoretical line of action (the set of contact points in the fixed coordinate system) is known. The influence
of the misalignment errors can be determined directly by applying the TCA program.

1.13 Transition From Surface Line Contact to Point Contact

Instantaneous line contact of gear tooth surfaces may exist only in ideal gear drives without misalignment
and manufacturing errors. Such errors cause the gear tooth surfaces to contact each other at a point at every
instant instead of on a line. The set of contact points on the gear tooth surface forms the contact path. A current
point of the contact path indicates the location of the center of the instantaneous contact ellipse. (Recall that
because of the elastic deformation of the teeth, the contact is spread over an elliptical area.) The set of contact
ellipses represents the bearing contact, which covers only a certain part of the tooth surface instead of the entire
working tooth surface (in the case of the line contact of an ideal gear drive).

Our goals are to determine the following: (1) the contact path for a misaligned gear drive and (2) the
transmission errors caused by misalignment. Such problems are important for those gear drives whose gear
tooth surfaces are designed as mutually enveloping. Typical examples are a worm-gear drive with a cylindrical
worm and involute helical gears with parallel axes.

Figure 1.13.1(a) shows two neighboring contact lines L1(φ) and L2(φ + dφ) on surface Σ1 of an ideal gear drive
without misalignment. Surface Σ1 is in instantaneous line contact with Σ2; parameter φ is the generalized
parameter of motion, and point M is a current point of contact line L1(φ). The displacement from M to any point
on L2(φ + dφ) can be performed in any direction if it differs from the tangent to line L1(φ) at M. However, in
the case of a misaligned gear drive with a point contact of surfaces Σ1 and Σ2, we have to determine (1) the
transition point P on the contact line L1(φ) (fig. 1.13.1(b)) (the transfer from line contact of the surfaces to point
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contact will occur in the neighborhood of P) and (2) the current point P* of the real contact path. The direct
determination of P* is impossible because the Jacobian ∆5 of the system of equations (1.12.3) of surface
tangency is equal to zero. Therefore, it becomes necessary to determine an intermediate point K in the
neighborhood of P (fig. 1.13.1(b)) where ∆5 differs from zero. The determination of point K is based on the fact
that vector PK  is collinear to the vector that passes through two neighboring transition points. An equation to
determine the transition point on a contact line L1(φ) was proposed in Litvin (1994) and Litvin and Hsiao (1993).
The Jacobian ∆5 at point K differs from zero, and we can start the procedure of simulating the meshing of two
surfaces in point contact.

Figure 1.13.2 shows the shift in the bearing contact in a misaligned worm-gear drive. Transmission errors
due to misalignment will occur and may cause noise and vibration (see section 1.14).

Figure 1.13.1.—For derivation of transition point. (a) Representation of two neighboring contact lines.
   (b) Transition from surface point P to P* via K.
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Figure 1.13.2.—Contact path of misalignment of
   worm-gear drive. Change of center distance,
   DE = 0.5 mm; change of shaft angle, Dg = 5'.
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1.14 Design and Generation of Gear Drives With Compensated
Transmission Errors

Influence of Transmission Errors on Conditions for Transfer of Meshing

Experimental tests show that the level of noise and vibration depends on the level and shape of transmission
errors caused by gear misalignment. Henceforth, we will assume that the gear tooth surfaces are mismatched
and that they contact each other at every instant at a point. This precondition is important when designing low-
noise gear drives, but it must be complemented with the requirement that one apply the predesigned parabolic
function of transmission errors, which is represented as

∆φ φ φ2 1 1
2 1 14 1( ) ( . . )= −a

It will now be shown that the application of such a function allows one to absorb transmission errors caused
by gear misalignment, to avoid edge contact, and to improve the conditions for the transfer of meshing. Edge
contact means curve-to-surface contact that may occur instead of surface-to-surface contact. In such a case, the
curve is the edge of the gear tooth surface of one of the mating gears that is in mesh with the tooth surface of
the mating gear. The transfer of meshing means that the continuous transformation of motions by a gear drive
requires that a pair of teeth in mesh be changed for another pair.

Figure 1.14.1(a) shows that the transmission function φ2(φ1) for an ideal gear drive is linear and is represented
as

φ φ φ2 1
1

2
1 1 14 2( ) ( . . )= N

N

where N1 and N2 are the gear tooth numbers. The contact ratio (the number of teeth being in mesh
simultaneously) may be larger than 1 in an ideal gear drive. In reality, ideal gear drives do not exist because
alignment errors cause transmission errors that substantially worsen the conditions for the transfer of motion.
Figure 1.14.1(b) shows the transmission function φ2(φ1) for a misaligned gear drive that is a piecewise nonlinear
function for each cycle of meshing with worsened conditions for the transfer of meshing. The cycle of meshing
is determined with the angles of rotation of the driving and driven gear represented as φ1 = (2π/N1) and
φ2 = (2π/N2). The author and his fellow researchers at the University of Illinois investigated crowned involute
helical gears, double-circular-arc helical gears, and hypoid gears. They found that the function of transmission
errors ∆φ2(φ1) for misaligned gear drives usually has the shape shown in figure 1.14.2(a). The linear part of
∆φ2(φ1) is caused by gear misalignment; the nonlinear dashed part of  ∆φ2(φ1) corresponds to the portion of the
meshing cycle when the edge contact occurs. The second derivative of  ∆φ2(φ1), and therefore the acceleration
of the driven gear, makes a big jump at the transfer point A of the meshing cycle.

The author’s approach is directed at improving the conditions for the transfer of meshing and is based on the
application of a predesigned parabolic function (1.14.1) of transmission errors. Such a function is provided by
the proper modification of gear tooth surfaces or by the stipulation of specific relations between the motions
of the tool and the generating gear in the generation process. It will be shown next, that the simultaneous action
of both transmission error functions, the predesigned one and that caused by misalignment (in fig. 1.14.2(a)),
causes a resulting function of transmission errors that is again a parabolic function having the same slope as the
initially predesigned parabolic function. The magnitude ∆φ2max of the resulting maximal transmission errors
(caused by the interaction of both functions shown in fig. 1.14.2(b))  can be substantially reduced. The level of
the driven gear accelerations is reduced as well, and an edge contact, as a rule, can be avoided.

The transmission function for the gear drive, when the predesigned parabolic function of transmission errors
is provided, is shown in figure 1.14.3(a). The predesigned parabolic function is shown in figure 1.14.3(b). It is
important to recognize that the contact ratio for a misaligned gear drive with rigid teeth is equal to 1. However,
the real contact ratio is larger than 1 because of the elastic deformation of the teeth. While investigating the
correlation between the predesigned function of transmission errors and the elastic deformation of teeth, we
have to consider the variation in the elastic deformation of the teeth during the meshing process, but not the
whole value of the elastic deformation. It is assumed that the variation in elastic deformation is comparable to
the level of compensated transmission errors.
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Figure 1.14.1.—Transmission functions of ideal and misaligned gear drives. (a) Ideal.
   (b) Misaligned.
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Interaction of Parabolic and Linear Functions of Transmission Errors

Figure 1.14.4(a) shows the interaction of two functions: (1) the linear function  ∆φ2
(1) = bφ1 caused by gear

misalignment and (2) the predesigned parabolic function ∆φ2
(2) = –aφ1

2 provided by the modification of the
contacting gear tooth  surfaces. Our goal is to prove that the linear function ∆φ2

(1)(φ1) will be absorbed because
of the existence of the parabolic function ∆φ2

(2) = –aφ1
2. To prove it, we consider the resulting function of

transmission errors to be

∆ ∆ ∆φ φ φ φ φ φ φ φ2 1 2
1

1 2
2

1 1 1
2 1 14 3( ) ( ) ( ) ( . . )( ) ( )= + = −b a

The proof is based on the consideration that equation (1.14.3) represents in a new coordinate system with axes
(∆ψ2, ψ1) (fig. 1.14.4(a)) the parabolic function

∆ψ ψ2 1
2 1 14 4 = −a ( . . )

The axes of coordinate systems (∆ψ2, ψ1) and (∆φ2, φ1) are parallel but their origins are different. The
coordinate transformation between the coordinate systems above is represented by

∆ ∆ψ φ ψ φ2 2

2

1 14 2
1 14 5= − = −b

a

b

a
, ( . . )

Equations (1.14.3) and (1.14.5), considered simultaneously, yield equation (1.14.4). Thus, the linear function
∆φ2

(1) (φ1) is indeed absorbed because of its interaction with the predesigned parabolic function ∆φ2
(2) (φ1). This

statement is in agreement with the transformation of equations of second-order curves discussed in the
mathematics literature (Korn and Korn, 1968).

The difference between the predesigned parabolic function ∆φ2
(2) (φ1) and the resulting parabolic function

∆ψ2(ψ1) is the location of points (A*,B*) in comparison with (A,B). Figure 1.14.4(a) shows that the symmetrical
location of (A,B) is turned into the asymmetrical location of (A*,B*). However, the interaction of several
functions ∆ψ2(ψ1), determined for several neighboring tooth surfaces, provides a symmetrical parabolic
function of transmission errors ∆ψ2(ψ1) as shown in figure 1.14.4(b). (The neighboring tooth surfaces enter into
mesh in sequence.) The symmetrical shape of function ∆ψ2(ψ1) determined for several cycles of meshing can
be achieved if the parabolic function ∆φ2

(2)(φ1) is predesigned in the area (fig. 1.14.4(a))

φ φ π
1 2

1

2
1 14 6( ) ( ) ( . . )B A

N

b

a
− ≥ +

The requirement (1.14.6), if observed, provides a continuous symmetrical function ∆ψ2(ψ1) for the range of
the meshing cycle φ1 = 2π/N1.

Figure 1.14.4.—Interaction of parabolic and linear functions. (a) Linear and parabolic functions of
   transmission errors. (b) Resulting function of transmission errors.
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Appendix A
Parallel Transfer of Sliding Vectors

A sliding vector a is determined by its magnitude |a| and the line of its action A0-A (fig. A.1), along which
it can be moved. Examples of a sliding vector are forces and angular velocities. In the last case, the line of action
A0-A is the axis of rotation.

The parallel transfer of a sliding vector means that a can be substituted by a* = a and a vector moment

m R a= × ( . )A 1

where R is a position vector drawn from point O of the line of action of a* to any point of the line of action of
a. It is easy to prove that the vector moment m, for instance, can be expressed as (fig. A.1)

m a= ×OA0 2( . )A

Taking into account that

R a= + = +OA A A OA0 0 0 3* ( . )λ A

where λ is a scalar factor, we obtain

m R a = a a a= × +( ) × = ×OA OA0 0 4λ ( . )A

Figure A.2 is an example of a sliding vector as the angular velocity of rotation ω  about the axis A0-A. The
axis of rotation does not pass through the origin O of the considered coordinate system S(x,y,z). The velocity
of point M in rotation about A0-A can be determined using the following procedure:

Step 1: We substitute vector ω  that passes through A0 by a parallel and equal vector ω* that passes through O
and the vector moment

m = ×OA0 5ωω ( . )A

where m is a free vector that represents the velocity of translation.

Step 2: The motion of point M is represented now in two components: (1) as translation with the velocity m and
(2) as rotation about OO* with the angular velocity ω* = ω.

Step 3: The velocity of rotation of point M about the axis OO * is determined as

vrot = ×ωω * ( . )OM A 6
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Figure A.1.—Representation of sliding vector.
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Step 4: The whole velocity of point M is determined as

v r R= ×( ) + ×( ) = × −OA OM0 7ωω ωω ωω ( ) ( . )A

where r  = OM and R = OA0 .

Step 5: It is easy to verify that equation (A.7) may be interpreted as

v = ×ωω ρρ ( . )A 8

where ρ = r  – R = A M0  represents the position vector drawn from point A0 of the axis of rotation A0-A to point
M. A position vector ρ* may be drawn to M from any point on the line of action A0-A. For instance, we may
consider that ρ* = A M*  (not shown in the figure) and represent v as

v = ×ωω A * M ( . )A 9
Taking into account that

A M A A A M A M* * ( . )*= + = +0 0 0 0 10λ a A
we obtain

v a= × = × +( ) = ×ωω ωω ρρ ωω ρρA* M λ* ( . )A 11
since

ωω × λ* ( . )a = 0 A 12

because of the collinearity of vectors.
Equations (A.7) and (A.8) enable one to determine the velocity of point M by two alternate approaches.

Henceforth, we will use the approach that is based on the substitution of sliding vector ω  with an equal vector
ω* and the vector of translation m.

Problem A.1. Represent analytically vector velocity v of point M by considering as given (fig. A.2)

ωω = [ ] = = [ ] = [ ]ω γ γ0 0 00sin cos , –     ,      T T TOA E OM x  y  zR
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Appendix B
Screw Axis of Motion: Axodes

B.1 Screw Motion

Generally, the motion of a rigid body may be represented as a screw motion—rotation about and translation
along an axis called the axis of screw motion.

Figure B.1.1 shows that gears 1 and 2 perform rotation about crossed axes with angular velocities ω (1) and
ω (2). The instantaneous relative motion of gear 1 may be represented as a screw motion with parameter p about
the S-S axis that lies in planeΠ that is parallel to vectors ω (1) and ω (2). To determine the location of plane Π
and the screw parameter p, we use the following procedure:

Step 1: Substitute vectors ω (1) and –ω (2) with equal vectors that lie in plane Π and with respective vector
moments

m mf s f f f f s f fO O O O( ) ( ) ( ) ( ),      – ( . . )1 1 2 2 1 1= ( ) × = ( ) ×ωω ωω2 B

The subscript f indicates that vectors in equations (B.1.1) are represented in coordinate system Sf.

Step 2: The angular velocity in relative motion ωf
(12) is represented as (fig. B.1.2)

ωω ωω ωω ωω ωω ωωf f f f f
( ) ( ) ( ) ( ) ( ) ( )– sin cos ( . . )12 1 2 2 1 2 1 2= + ( ) = − + −( )γ γj k B

The resulting vector moment is

m m mf f f s f sO O O O( ) ( ) ( ) ( ) ( ) ( . . )12 1 2 1 2 1 3= + = ×( ) + × −ωω ωω2 B

Step 3: Vector moment mf
(12) is a function of O Os f = Xf  if.. Our next goal is to make mf

(12) collinear to ω (12),
and this requirement can be represented by

O O O O ps f f f s f f f( ) × − ( ) × =ωω ωω ωω( ) ( ) ( ) ( . . )1 2 12 1 42 B

Drawings of figure B.1.1 show that

O O O O O Os f s f2 2= + ( . . )B 1 5

Equations (B.1.4) and (B.1.5) yield

O O O O ps f f f f f f f( ) × − ( ) × =ωω ωω ωω( ) ( ) ( ) ( . . )12 2 12 1 62 B

Step 4: The determination of  O Os f = Xf if is based on the following transformation of equation (B.1.6):



NASA RP–1406 39

ωω ωω ωω ωω ωω ωωf s f f f f f f f f fO O O O p( ) ( ) ( ) ( ) ( ) ( ) ( . . )12 12 12 2 12 12 0 1 7× ( ) ×





− × ( ) ×





= ×( ) =2 B

Equation (B.1.7) yields

ωω ωω ωωf s f f f f fO O O O( ) ( ) ( ) ( . . )12 2 12 2 0 1 8( ) − ( ) ⋅( ) =2 B

since

− ⋅ ( )





=ωω ωωf f s f f
O O( ) ( ) ( . . )12 12 0 1 9B

− ⋅ ( )





=ωω ωωf f f f
O O( ) ( ) ( . . )2 12 0 1 102 B

The scalar products of vectors in equations (B.1.9) and (B.1.10) are equal to zero because of the
perpendicularity of cofactor vectors.

Vectors of equation (B.1.8) are represented as (fig. B.1.1)

ωω f f f

f fm m

( ) ( ) ( ) ( )

( )

sin cos

sin cos ( . . )

12 2 1 2

1
21 211 1 11

= − + −( )

= − + −( )[ ]

ω ω ω

ω

γ γ

γ γ

j k

j k B

Figure B.1.1.—Screw axis of rotation.

S
E

S

g

y
f

xf

Of zf

Xf

Os

O2
v(2)

v(12)
pv(12)

v(1)

P



40 NASA RP–1406

where m21
2 1= ω ω( ) ( ) .

O O Xs f f f= i ( . . )B 1 12

O O Ef f2 = − i ( . . )B 1 13

ωω f f fm( ) ( ) cos ( . . )2
21

1 1 14= +( )ω sin γ γj k B

The orientation of ω (12) and axis S-S of screw motion is illustrated by the drawings of figure B.1.2.
Equations (B.1.8) and (B.1.11) to (B.1.14) yield

X E
m m

m m
f =

−( )
− +

21 21

21 21
21 2

1 15
cos

cos
( . . )

γ
γ

B

Step 5: The determination of the screw parameter p is based on the following transformation of
equation (B.1.7):

ωω ωω ωω ωω ωωf s f f f f f f fO O O O p( ) ( ) ( ) ( ) ( ) ( . . )12 12 12 2 12 2
1 16⋅ ( ) ×





− ⋅ ( ) ×





= ( )2 B

Here

ωω ωωf s f f fO O( ) ( ) ( . . )12 12 0 1 17⋅ ( ) ×





= B

because of the collinearity of two cofactor vectors in the triple product.
Equations (B.1.16) and (B.1.17) yield the following expression for p:

p E
m

m m
=

+
21

21
2 1 18

sin

cos
( . . )

γ
γ1 – 2 21

B

For the case when the rotation of gear 2 is opposite to that shown in figure B.1.1, it is necessary to make m21
negative in equations (B.1.15) and (B.1.18). A negative value of Xf in equation (B.1.15) indicates that plane Π
intersects the negative axis xf . A negative value of p indicates that vector pω (12) is opposite the direction shown
in figure B.1.1.

Figure B.1.2.—Relative angular velocity.
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B.2 Axodes

For the case of rotation between crossed axes with a constant gear ratio, the axodes are two hyperboloids of
revolution. The axode of gear i (i = 1,2) is formed as a family of instantaneous axes of screw motion that is
generated in coordinate system Si when gear i is rotated about its axis. An axode as a hyperboloid of revolution
is shown in figure B.2.1. Two mating hyperboloids (fig. B.2.2) contact each other along a straight line that is
the axis of screw motion. The relative motion of hyperboloids is rolling with sliding (about and along the axis
of screw motion).

In the real design of gears with crossed axes, pitch surfaces instead of axodes are applied. In cases of worm-
gear drives and hypoid gear drives, the pitch surfaces are two cylinders and two cones, respectively (Litvin,
1968, 1989). The point of tangency of pitch surfaces is one of the points of tangency of gear tooth surfaces.

Figure B.2.2.—Mating hyperboloids.

Axis of
screw
motion

Figure B.2.1.—Hyperboloid of revolution.
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Appendix C
Application of Pluecker’s Coordinates and Linear

Complex in Theory of Gearing

C.1 Introduction

This appendix covers the basic concepts of Pluecker’s coordinates, Pluecker’s equation for a straight line,
and Pluecker’s linear complex (Pluecker, 1865). It is shown that applying the linear complex enables one to
illustrate the vector field in the screw motion and to interpret geometrically the equation of meshing and the two-
parameter enveloping process.

Many scientists considered Pluecker’s ideas to have been a significant contribution to the theory of line
geometry (e.g., the work by Klein 1939; Bottema and Roth 1979; and Hunt, 1978).

The concepts of Pluecker’s coordinates and linear complex were applied to the theory of gearing by Brandner
(1983, 1988) and Grill (1993) and Häussler et al. (1996). This section is limited to Pluecker’s representation
of a directed line, his linear complex, and the application of these to the theory of gearing.

C.2 Pluecker’s Presentation of Directed Line

A straight line in a space is determined by a given position vector ro of a point Mo of the line and by a directed
vector a that is parallel to the straight line (fig. C.2.1). The parametric representation of a directed straight line
is

r r r a   = + = + ≠ ∈o o oM M Aλ λ λ( ),      ( . . )0 2 1C

The straight line is directed in accordance with the sign of the scalar factor λ.
If it is assumed that a passes through Mo, the moment of the directed straight line with respect to origin O is

determined as
m r aa o= × ( . . )C 2 2

It is easy to verify that
r a r a a r a m× = ( ) × ×o o+ = =λ a ( . . )C 2 3

m a r a aa ⋅ = ×( ) ⋅ = 0 2 4( . . )C
Equations

m r a = r a m aoa a= × × ⋅ =, ( . . )0 2 5C

are satisfied for any current point of the straight line. These equations determine a straight line and called
Pluecker’s equations of a straight line. Therefore, six coordinates ((ax,ay,az), (mx,my,mz)) are called Pluecker’s
coordinates. Only four of these coordinates are independent since ma · a = 0 and have a common scalar factor.
We may, for instance, consider ao = a/|a|, and ma* = r × ao instead of a and ma.
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C.3 Pluecker’s Linear Complex for Straight Lines on a Plane

A plane may be determined by considering as given: (1) a point Mo through which passes the plane and (2)
a normal N to the plane (fig. C.3.1).

A straight line that belongs to plane Π is represented as

r r a     ( ) N a= o + ≠ ⋅ =λ λ , ( . . )0 0 3 1C

Equations (C.3.1) yield

N r r⋅ ( ) =– o 0 3 2( . . )C

and the plane may be represented by the equation

N r⋅ = d ( . . )C 3 3

where N, ro, and consequently, d are given.
We consider now a line (g, mg), which belongs to the same plane if the following equation is observed

(Merkin, 1962):

N g m g g⋅ ×( ) = ⋅( )g d ( . . )C 3 4

Direct transformations of equation (C.3.4) yield

N g m N g r g N r g g g N g N r g g g g⋅ ×( ) = ⋅ × ×[ ] = ⋅ ⋅ − ⋅[ ] = ⋅ ⋅ = ⋅g d( ) ( ) ( ) ( ) ( ) ( . . )C 3 5

We are reminded that N · g = 0 since g must lie in plane Π.
Considering lines (a, ma) and (g, mg), we can verify that the couple of lines intersect each other or they are

parallel if the following equation is observed:

a m m g⋅ + ⋅ =g a 0 ( . . )C 3 6

The proof of this statement is based on the following:

(1) Direct transformations of equation (C.3.6) yield

Figure C.2.1.—Representation of straight line.
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a r r a g r r a g⋅ ×( ) + ×( ) ⋅ = −( ) ⋅ × =g a ag g ( ) ( . . )0 3 7C

(2) Equation (C.3.7) is observed if

(a) ra – rg = 0, a × g ≠ 0, which means that the lines have a common point.
(b) ra ≠ rg, a × g = 0, which means that the two lines are parallel.
Equation (C.3.6) represents Pluecker’s linear complex of all lines (g, mg) defined by a given vector a and

couple (a, ma).
Line (g, mg) has six Pluecker’s coordinates (gx , gy , gz , mgx, mgy , mgz), but only three are independent

because a line has only four independent Pluecker’s coordinates and an additional relation between the
coordinates is provided by equation (C.3.6).

C.4 Application to Screw Motion

Screw Motion

We consider the rotation of two gears about crossed axes. The relative motion may be determined as the screw
motion represented by vector ωs and moment ms = pωs (fig. C.4.1). Here, ωs and ms are the angular velocity
of rotation about and translation along the instantaneous axis of screw motion; p is the screw parameter.

Two coordinate systems S1 and S2 are rigidly connected to gears 1 and 2. Let us say that gear 1 is movable
whereas gear 2 is held at rest. Point M of gear 1 will trace out in S2 (in infinitesimal motion) the small arc of a
helix. The velocity v of point M of gear 1 with respect to point M of gear 2 may be represented by vector equation

v r= × +ωω ωωs sp ( . . )C 4 1

where r  is the position vector of point M. Two components of v represent the velocities in rotation about and
translation along the screw axis.

Figure C.3.1.—Representation of straight lines on a plane.
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Helix and Trihedron τ, b, and c

The velocity v is directed along the tangent τ to the helix. Tangent τ and the screw axis form the angle
(90° –λ) (fig. C.4.1) where

tan ( . . )λ
ρ ρ

= =p ps

s

ω
ω

C 4 2

and ρ is the shortest distance of point M from the axis of screw motion.
The helix on a cylinder with radius ρ  is represented as

r( ) cos( )      sin( )      ( . . )θ ρ θ ρ θ θ= + +[ ]q q p C 4 3

where θ  is the varied helix parameter; q and θ = 0 determine in plane z = 0 the location of the helix reference
point. The vector field of velocity v may be determined as the family of tangents to helices that are traced out
on coaxial cylinders of various radii ρ. Any one of the family of helices is a spatial curve. A small arc of the
helix is traced out in S2 by point M of S1, and it belongs to the osculating plane formed by tangent τ  to the helix
and the principal normal c to the helix (fig. C.4.2).

Trihedron τ, b, and c is formed by tangent τ to the helix, binormal b, and principal normal c (see definitions
in Favard, 1957; Litvin, 1994). The unit vectors of the trihedron are represented by

ττ = =
×
×

= ×
r
r

b
r r
r r

c bθ

θ

θ θθ

θ θθ
τ,      ,      ( . . )C 4 4

After derivations, we obtain

ττ =
− +

+
sin ( ) cos

cos ( ) cos

sin

( . . )

θ λ
θ λ

λ

q

q C 4 5

Figure C.4.1.—Presentation of relative velocity in screw motion. (a) Helix and trihedron t, b,
   and c. (b) Null plane.
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b =
+

− +
sin sin( )

sin cos( )

cos

( . . )

λ θ
λ θ

λ

q

q C 4 6

c =
− +
− +

cos( )

sin ( ) ( . . )

θ
θ

q

q

0

4 7C

Null Plane, Null Axes, and Linear Complex in Screw Motion

We choose in coordinate system S2 a point M and determine the velocity v of point M of coordinate system
S1 with respect to the screw motion by using equation (C.4.1). Then, we determine plane Π that passes through
M and is perpendicular to v (fig. C.4.1(b)). Plane Π is called the null plane of point M and vice versa, and point
M is called the null point (pole) of Π. Plane Π contains straight lines (g, mg) that pass through pole M. In
accordance with the definition of plane Π, we have

v g⋅ = 0 4 8( . . )C

Equations (C.4.8) and (C.4.1) yield

m g ms s g⋅ + ⋅ =ωω 0 4 9( . . )C

where ms = pωs, mg = r × g = OM  × g. Equation (C.4.9) may be called Pluecker’s linear complex for screw
motion.

Any straight line (g, mg) through M that belongs to null plane Π is called a null axis. Particularly, the binormal
to the helix is also a null axis.

Figure C.4.2.—Illustration of orientation of null plane. (a) Normal plane and tangent plane. (b) Null plane
   and osculating plane.
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C.5 Interpretation of Equation of Meshing of One-Parameter
Enveloping Process

The basic form of the equation of meshing (see section 1.2) is represented by

N vi i i f⋅ = =( )      ( , , ) ( . . )12 0 1 2 5 1C

where Ni is the common normal to the contacting surfaces and vi
(12) is the relative velocity. The scalar product

of vectors is invariant to the applied coordinate systems S1, S2, and Sf that are rigidly connected to gears 1, 2,
and the frame, respectively. Equation (C.5.1) is obtained from the conditions of tangency of the generating and
enveloping surfaces.

The application of the concept of Pluecker’s linear complex enables one to illustrate the equation of meshing
in terms of the null axis and the null plane and the orientation of the normal N in the null plane. We now introduce
two approaches for determining Pluecker’s linear complex.

Approach 1. Since normal vector N to the contacting surfaces is perpendicular to the relative velocity vs, the
normal (N, mN) belongs to the null plane, and an equation similar to (C.4.9) yields the linear complex

m N ms s N⋅ + ⋅ =ωω 0 5 2( . . )C

where ms = pωs and mN = OM  × N.
The orientation of the normal (N, mN) in the null plane is shown in figure C.4.2.

Approach 2. The concept of using screw motion for the determination of relative velocity was presented in
Approach 1 and in section C.4. We have considered as well that coordinate system S1 rigidly connected to gear
1 performs a screw motion with respect to coordinate system S2 rigidly connected to gear 2 while S2 and gear
2 are held at rest. However, this concept is not the primary one to be used in kinematics and in the theory of
gearing. The following derivations of Pluecker’s linear complex are based on the concept that both gears
perform rotations about their axes as shown in figure C.5.1. The derivation procedure follows:

Step 1: Rotation about crossed axes is performed with angular velocities ω(1) and ω(2) as shown in fig-
ure C.5.1(a). By substituting –ω(2) with an equal vector that passes through Of and a respective vector moment
mω , we obtain the velocities in relative motion (fig. C.5.1(b)):

Figure C.5.1.—Representation of normal to contacting surfaces as the null axis. (a) Applied coordi-
   nate system and vectors v(1) and v(2) of angular velocities. (b) Relative angular velocity v(12),
   vector mv and surface normal N.
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ωω ωω ωω ωω ωω ωω= − = × −( ) ≡( )( ) ( ) ( ) ( ),      ,      ( . . )1 2 2 12 5 3m Eω C

where E = O Of 2 .

Step 2. It is known from differential geometry and the theory of gearing that the generating surface and the
envelope are in line contact at every instant. Figure C.5.1(b) shows that point M is a point of the line of contact,
N is the common normal to the contacting surfaces at M, and r  = O Mf  is the position vector of M.

The normal as a straight line may be represented by the direction vector N and the respective vector moment
mN. Thus, we consider as given

N m r N,      ( . . )N = × C 5 4

If (N, mN) belongs to Pluecker’s linear complex, the following equation must be observed:

m N mω ⋅ + ⋅ =N ωω 0 5 5( . . )C

Equations (C.5.3) to (C.5.5) yield

− ×( ) ⋅ + × ⋅ =E N r Nωω ωω( ) ( ) ( . . )2 0 5 6C

After transformations of equation (C.5.6), we obtain

N r E N v⋅ ×( ) − ×( )[ ] = ⋅ =ωω ωω( ) ( ) ( ) ( . . )12 2 12 0 5 7C

Equation (C.5.7) is observed since it is the equation of meshing of the contacting surfaces. This means that
N is the null axis.

Using Pluecker’s terms, we can determine the null plane as the one that passes through contact point M,
contains the normal N, and is perpendicular to the moment.

m E r r E* ( . . )( ) ( ) ( ) ( ) ( ) ( )= − ×( ) + − × −( )[ ] = −( ) × − ×( )ωω ωω ωω ωω ωω ωω2 1 2 1 2 2 5 8C

It is evident that m* = v(12), which means that the null plane is perpendicular to the relative velocity v(12).
The drawings of figure C.4.2(a) illustrate the concept of planar Lp and spatial Ls curves located on a tooth

surface. Both curves are in tangency at point M and their common unit tangent is designated τ. These drawings
also show the tangent plane to surface Σ at point M.

The drawings of figure C.4.2(b) represent in an enlarged scale curves Lp and Ls. For the case of the meshing
of the envelope and the generating surface, spatial curve Ls is the trajectory that is traced out in relative motion
by point M of the moving surface on the surface held at rest. The relative motion is a screw motion (see section
C.4), and the relative velocity is directed along the tangent to the helix at point M that coincides with the unit
tangent τ shown in figure C.4.2(b). The null plane at any point M of the tangency of the envelope and the
generating surface can be determined as follows. Consider as known at point M the common normal N to the
surfaces and the vector of relative velocity or its unit tangent τ. Then, the null plane at point M is determined
to be the plane that passes through normal N and is perpendicular to τ, the unit vector of relative velocity
(fig. C.4.2(b)). We are reminded that the null plane also contains the binormal and the principal normal to the
trajectory Ls at point M.
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C.6 Interpretation of Equations of Meshing of Two-Parameter
Enveloping Process

Introduction

In a two-parameter enveloping process, the generated surface is determined to be the envelope of the two-
parameter family of surfaces (Litvin, Krylov, and Erikhov, 1975; Litvin and Seol, 1996).

The generation of an involute helical gear with a grinding worm is used to illustrate the two-parameter
enveloping process. The method of grinding the spur and the helical gears with a cylindrical worm and the
grinding equipment were developed by the Reishauer Corporation. The meshing of the worm with the gear
being ground may be considered as the meshing of two involute helicoids with crossed axes (Seol and Litvin,
1996a).

Figure C.6.1 shows the grinding worm and the gear to be ground and the shortest distance between the axes
as the extended one (for the simplification of the drawings). The machining center distance is installed as

E r rwg pw pg= + ( . . )C 6 1

where rpw and rpg are the radii of the pitch cylinders of the worm and the gear. With such a center distance, points
M1 and M2 of the pitch cylinders will coincide with each other and the pitch cylinders will be in tangency.

Figure C.6.1.—Representation of grinding of helical
   gear by worm.
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Figure C.6.2 shows the coordinate systems applied to describe the generation process. The movable
coordinate systems Sw and Sg are rigidly connected to the worm and the gear, respectively. Coordinate systems
Sm, Sf, and Sn are fixed.

For the case when the worm and the gear are both right hand, the crossing angle γwg between the axes of the
worm and the gear is represented by

γ λ λwg pw pg= + ( . . )C 6 2

where λpi (i = w,g) is the lead angle on the pitch cylinder.
The process of gear generation requires two independent sets of motion:

(1) The first set of motions is executed as the rotation of the gear and the worm about axes zg and zw,
respectively, with angular velocities ω (g) and ω (w) related by

Figure C.6.2.—Coordinate systems for grinding of helical gear by worm.
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ω
ω

( )

( ) ( . . )
w

g gN= C 6 3

It is assumed that a one-thread grinding worm will be used; Ng is the number of the gear teeth.
(2) The second set of motions is executed as the translation of the worm with the velocity dψ(w)/dt in the

direction O Om w , which is parallel to the gear axis, and the additional rotation of the gear with the angular
velocity Ω(g). Here,

d

dt

ψ Ω( )
( )

( . . )
w

g
gp= C 6 4

where pg is the gear screw parameter (pg > 0 for a right-hand gear). The second set of motions dψ(w)/dt and Ω(g)

is required to provide the feed motion during the grinding process.

Derivation of Gear Tooth Surface

The gear tooth surface Σg is an envelope of the two-parameter family of worm thread surfaces and is
determined by the following equations (Litvin, Krylov, and Erikhov, 1975):

r M rg gw wu u( , , , ) ( , ) ( , ) ( . . )θ φ ψ φ ψ θ= C 6 5

N vi
w

i
wg( ) ( . . )⋅ =( , )φ 0 6 6C

N vi
w

i
wg( ) ( . . )⋅ =( , )ψ 0 6 7C

where (u,θ) are the surface parameters of the worm thread surface Σw; φ and ψ are the generalized parameters
of motion of the two sets of independent motions mentioned above; rg(u,θ,φ,ψ) is the vector function that
determines in Sg the two-parameter family of surfaces Σw generated in Sg; v

(wg,φ) is the relative velocity that
is determined when the variable is the parameter of motion φ and ψ  is held at rest; v(wg,ψ) is the relative velocity
in the case when the variable is the parameter of motion ψ and φ is held at rest; (C.6.6) and (C.6.7) are the
equations of meshing and the subscript i = g,n,m,f,w indicates that the respective scalar product of vectors is
invariant to the applied coordinate system.

Equations (C.6.5) to (C.6.7) represent the sought-for tooth surface by four related parameters.

Interpretation of Equations of Meshing by Application of Pluecker’s Linear Complexes

The transformation of the equation of meshing (C.6.6) is based on the following:

(1) The gear and the worm perform rotational motions about the crossed zw- and zg-axes with angular
velocities ω(w) and ω(g), respectively (fig. C.6.2). Vectors of the scalar product are represented in the Sf
coordinate system.

(2) The relative velcoity v(wg,φ) is represented as

v rf
wg

f
w

f
g

f f g
gO O( , )φ = −( ) × − ×ωω ωω ωω( ) ( ) ( ) ( . . )C 6 8

Then we obtain the following equation of meshing (C.6.6):

ωω ωω ωωf
w

f
g

f f g
g

f
wO O( ) ( ) ( ) ( . . )−( ) × − ×[ ]⋅ =r N( ) 0 6 9C

where r f is the position vector of the point of tangency of surfaces Σw and Σg.
We interpret the equation of meshing (C.6.9) by Pluecker’s linear complex using the following procedure:

Step 1: The relative motion during generation is represented by vector ω and moment mω that are represented
as
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ωω ωω ωω ωω ωω= − = = − ×( ) ( ) ( , ) ( )     ( . . )w g w g
f g

gO O, mω C 6 10

Step 2: The common normal N to the contacting surfaces and the moment mN of N represented as

m N r NN f fO M= × = × ( . . )C 6 11

are related to ω and mω by the equation of the linear complex

ωω ⋅ + ⋅m m NN ω = 0 ( . . )C 6 12

Equation (C.6.12) yields the equation of meshing (C.6.9). The null plane passes through the point of tangency
M, contains the normal N, and is perpendicular to v(wg,φ). The normal N is the null axis of the linear complex
(see section C.3).

Let us now consider the interpretation of the equation of meshing (C.6.7) by application of Pluecker’s linear
complex. The second set of the paremeters of motion is represented by the couple of vectors (Ω,mΩ), which
can be obtained from equations that relate the motion of the worm with respect to the gear. Here,

ΩΩ ΩΩ ΩΩ ΩΩ= − = −( ) ( ) ( )ω g g ( . . )C 6 13

since Ω (w) = 0,

mΩ = d

d

ψ ( )
( . . )

w

t
C 6 14

The other couple of vectors is represented by

N m,      N

where mN is represented by equation (C.6.11).
Both couples of vectors are related by the equation of the linear complex:

ΩΩ⋅ + ⋅ =m m NN Ω 0 6 15( . . )C

that yields

− ⋅ ×( ) + ⋅ =ΩΩ( )
( )

( . . )g
f

w

t
r N N

d

d

ψ
0 6 16C

Equation (C.6.16), after simple transformations, may be represented as

− × +






⋅ =ΩΩ( )

( )
( . . )g

f

w

t
r N

d

d

ψ
0 6 17C

Equations (C.6.17) yields

v Nf
wg

f
(w)( , ) ( . . )ψ ⋅ = 0 6 18C

The null plane for the second set of parameters of motion passes through the same point M and is
perpendicular to v(wg,ψ) but not to v(wg,φ). The common surface normal N is the null axis of the second linear
complex.



NASA RP–1406 53

Chapter 2

Development of Geometry and Technology

2.1 Introduction

Errors in gear alignment and manufacture may shift the bearing contact, turn it into edge contact, and cause
transmission errors that, as we are reminded, are the main source of vibration. The purpose of this chapter is
to present the latest developments in gear geometry and technology directed at improving bearing contact and
reducing transmission errors.

The main errors of alignment and manufacture are as follows: the error of the shaft angle, the shortest center
distance, the leads in the case of helical gears, the errors in machine-tool settings (errors of orientation and
location of the tool with respect to the gear being generated), and the errors of the circular pitches. In addition,
we have to take into account the deflection of the teeth and shafts under load. To avoid or at least to reduce such
defects, it becomes necessary to substitute the line contact of the gear tooth surfaces by the point contact and
then, in addition, to modify the gear tooth surfaces. The modification of gear geometry is based on the proper
deviation of the gear tooth surfaces from the theoretical ones. The surface deviation can be provided (1) in the
longitudinal direction with the contact path in the profile direction (the direction across the tooth surface) and
(2) in the profile direction with the longitudinal direction of the contact path. In some cases, both types of
deviation must be provided simultaneously, but one of them must be the dominant.

The desired modification of gear geometry becomes possible by applying inventive methods of gear
technology such as (1) the mismatch of tool surfaces for the generation of spiral bevel gears and hypoid gears,
(2) the varied plunge of the tool for the generation of spur and helical gears, (3) the application of an oversized
hob for the generation of worm gears. Some of these examples are considered in the following sections. We
emphasize that in all of such cases of gear manufacture, it is important to provide a predesigned parabolic
function of transmission errors and to reduce their magnitude (see section 1.14), which will improve the
conditions of the transfer of meshing while one pair of teeth is changed for the neighboring one.

This chapter summarizes the developments achieved at the Gear Research Laboratory of the University of
Illinois at Chicago. Details are given in Litvin and Kin (1992); Litvin and Hsiao (1993); Litvin and Lu (1995);
Litvin et al. (1995, 1996a, 1996b); Litvin, Chen, and Chen (1995); Litvin and Feng (1996, 1997); Litvin, Wang,
and Handschuh (1996); Litvin and Seol (1996); Seol and Litvin (1996a, 1996b); Zhang, Litvin, and Handschuh
(1995); and Litvin and Kim (1997).

2.2 Modification of Geometry of Involute Spur Gears

Localization of Contact

Spur gears are very sensitive to the misalignment of their axes, which causes an edge contact. The sensitivity
of the gear drive to such a misalignment can be reduced by localizing the bearing contact. The localization of
the contact as proposed in Litvin et al. (1996b) can be achieved by plunging the grinding disk in the generation
of the pinion by form-grinding (fig. 2.2.1). The mating gear is generated as a conventional involute gear. The
plunging means that during the pinion generation, the shortest distance between the axes of the grinding disk
and the pinion will satisfy the equation (fig. 2.2.1)



54 NASA RP–1406

E E a lo d d− − 2 2 2 1( . . )

where E and Eo are the current and nominal values of the shortest distance, ad is the parabola coefficient of
function E(ld), and ld is the displacement of the disk in the direction of the pinion axis. The localized bearing
contact is shown in figure 2.2.2.

The same results can be obtained by varying the shortest distance between the hob (grinding worm) and the
generated spur or helical pinion. This variation is based on the application of an equation that is similar to
equation (2.2.1).

Transformation and Reduction of Transmission Errors

The profile of the pinion cross section for ld = 0 coincides with the axial profile of the disk. If the axial profile
of the disk is designed as the involute profile of the conventional pinion, the gear drive is still sensitive to
misalignment ∆α and the error of tooth distance, which will cause an almost linear discontinuous function of
the transmission errors with the period of the meshing cycle φ1 = 2π/N1 (fig. 2.2.2). Applying a predesigned
parabolic function enables the absorbtion of the transmission error linear functions shown in figure 2.2.3 (see
section 1.14).

The predesign of the parabolic function of the transmission errors is based on the following alternative
approaches: (1) changing the curvature of the pinion or the gear and (2) executing a nonlinear function that
relates the rotational motion of the gear (or the pinion) and the translation of the imaginary rack-cutter used to
generate the gear (or the pinion).

Changing the curvature of the pinion can be achieved by substituting the tooth involute profile that
corresponds to the theoretical base circle of radius rbl by an involute profile of radius r 'bl (fig. 2.2.4).
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Figure 2.2.2.—Path of contact and bearing contact 
   of aligned gear drive with modified geometry.
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Figure 2.2.4.—Theoretical and modified profiles of spur pinion.
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Figure 2.2.3.—Transmission errors caused by errors of
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2.3 Modification of Involute Helical Gears

Computerized Investigation of Misaligned Conventional Involute Helical Gears

Aligned involute helical gears are in line contact at every instant, as shown in figure 2.3.1. Misalignment
caused by changes in the shaft angle, the lead, and the normal profile angle of one of the mating gears causes
edge contact instead of surface-to-surface tangency. Edge contact means tangency of the edge of one gear with
the tooth surface of the mating gear (see section 1.11). The edge and the surface are in mesh at every instant at
a point instead of on a line. An example of an edge contact caused by the change of the shaft angle ∆γ  or the
change of the pinion lead angle ∆λp1 is shown in figure 2.3.2. The edge contact caused by ∆γ  or ∆λp1 is also
accompanied by transmission errors, as shown in figure 2.3.3. However, the change in the normal profile angle
does not cause transmission errors, only an edge contact.

In the case of a change in the center distance E, the gear tooth surfaces are still in a line contact similar to those
shown in figure 2.3.1. However, an error in ∆E causes a change in the backlash and in the pressure angle of the
gear drive.

There is a mistaken impression that a change in the lead is sufficient to shift the bearing contact from the edge
to the central position and avoid transmission errors. Our investigation shows that a combination of ∆γ- and
∆λp1-errors will enable one to avoid transmission errors and obtain the favorable contact path shown in figure
2.3.4 if and only if

∆ ∆γ λ= p1 2 3 1( . . )

The signs of ∆γ and ∆λp1 depend on the hand of the helix.
Equation (2.3.1) must be observed with great precision because even a small difference between ∆γ and

∆λp1(or∆λp2) will cause an edge contact. Therefore, the change of the lead, if it is not accompanied by
applying a predesigned parabolic function of transmission errors (see below), is not a convenient way to avoid
an edge contact. In conclusion, we must emphasize that the computerized investigation of misaligned helical
gears is a complex mathematical problem because the Jacobian of the system of equations that relate the surface
parameters and parameters of motion is close to zero (see section 1.11). What is required for the computerized
investigation of a misaligned gear drive is a determination of the proper initial guess.

Contact lines

Base
cylinder
helix

Figure 2.3.1.—Contact lines on tooth surfaces of
   helical gear.
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Figure 2.3.2.—Edge contact caused by Dg or Dlp1 =
   3 arc min. (a) Pinion tooth surface. (b) Gear tooth
   surface.
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Figure 2.3.4.—Path of contact caused by Dg = 3 arc min
   and Dlp1 

= –3 arc min. (a) Pinion tooth surface. (b) Gear
   tooth surface.
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Figure 2.3.3.—Function of transmission errors caused by
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Figure 2.3.6.—Path of contact caused by Dg = 3 arc min.
   (a) Modified pinion tooth surface. (b) Gear tooth surface.
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Figure 2.3.5.—Normal section of rack-cutters. (a) Rack-cutters for gear and pinion generation. (b) Pinion
   rack-cutter. (c) Gear rack-cutter.
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Profile Modification

The sensitivity of helical gears to misalignment has led designers and manufacturers to crown tooth surfaces.
The most common method of crowning is profile modification; that is, the profile of the cross section of one
of the mating gears (usually of the pinion) is deviated from the conventional involute profile. This can be
achieved as proposed in Litvin et al. (1995) by the application of two imaginary rack-cutters shown in
figure 2.3.5. The rack-cutters are rigidly connected and generate the pinion and the gear separately. Figure 2.3.5(a)
shows both rack-cutter profiles. The normal section of the pinion rack-cutter that generates the pinion space is
shown in figure 2.3.5(b), and the normal section of the gear rack-cutter that generates the gear tooth is shown
in figure 2.3.5(c). The deviation of the pinion rack-cutter profile from the gear rack-cutter profile is represented
by a parabolic function with the parabola coefficient ac. The tooth surfaces in the case of profile modification
are in point contact, and the path of contact is a helix, as shown in figure 2.3.6.

It can be easily verified that the profile modification enables one to localize the bearing contact and to avoid
an edge contact that might be caused by gear misalignment. However, the discussed modification does not allow
the elimination of transmission errors caused by misalignment, as shown in figure 2.3.7. Therefore, to reduce
the level of noise and vibration, it is necessary to provide a predesigned parabolic function of transmission errors
in addition to profile modifications.

2.4 Development of Face-Gear Drives

Introduction

Face-gear drives have found application in the transformation of rotation between intersected and crossed
axes. The Fellows Corporation invented the method of manufacturing face gears by a shaper which is based on
simulating the meshing of the generating shaper with the face gear by cutting.

Face-gear drives was the subject of intensive research presented in Davidov (1950) and Litvin (1968, 1994).
New developments in this area were supported by NASA Lewis Research Center and McDonnell Douglas
Helicopter Systems. An important application of face-gear drives in helicopter transmissions is based on the
concept of torque split (fig. 2.4.1). There are other examples of the successful application of face-gear drives
in transmissions.
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Figure 2.3.7.—Function of transmission errors for modified
   involute helical gear drive when Dg = 3 arc min.
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Pitch Surfaces

The pitch surfaces for bevel gears are two cones (fig. 2.4.2(a)) with pitch angles γ1 and γ2. The line of tangency
OI of the pitch cones is the instantaneous axis of rotation. The cones roll over each other in relative motion that
can be represented as rotation about OI. The pitch surfaces in a face-gear drive are the pinion pitch cylinder of
radius rp1 and the face-gear pitch cone with the pitch angle γ (fig. 2.4.2(b)). The tooth element proportions in
bevel gears are related by the application of the pitch line OI (fig. 2.4.2(a)) as the middle line of the teeth. The
tooth height in face-gear drives is constant, and the middle line of the teeth is the line of tangency O'M of the
pinion pitch cylinder of radius rp1 and the gear pitch cone with apex angle γ. It will be shown in the next section
that since O'M does not coincide with the instantaneous axis OI, the face-gear teeth become sensitive to
undercutting and pointing.

Generation of Face Gears

The process of generation by a shaper is shown in figure 2.4.3. Grinding and hobbing by a worm is a recently
developed process for face-gear generation. Methods for determining the surface of the worm (fig. 2.4.4) and
its dressing were developed by researchers at the University of Illinois at Chicago and at McDonnell Douglas
Helicopter Systems.

Avoidance of Undercutting and Pointing

The tooth of a face gear in three-dimensional space is shown in figure 2.4.5. The fillet surface is generated
by the top edge of the shaper tooth. Line L* is the line of tangency of the working part of the tooth surface and
the fillet. Undercutting may occur in plane A and pointing in plane B. The tooth surface is covered by lines of
tangency L of the face gear with the generating shaper.

The tooth of a face gear may be undercut and pointed in the process of generation by a shaper. These defects
can be avoided by properly designing the tooth length of the face gear. Dimensions L1 and L2 determine the zone
that is free of undercutting and pointing. The equations for computing L1 and L2 are represented in Litvin (1994).
The length of teeth (L1 − L2) with respect to the diametral pitch Pd may be represented by the unitless coefficient

Engine input

Driving spur pinion

Face-gears

Combining
gear

Rotor shaft output

NOTARTM

output

Sun gear

Figure 2.4.1.—Application of face-gear drives in helicopter transmissions.
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Figure 2.4.3.—Generation of face gear by shaper.
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c L L Pd= −( )2 1

whose value depends on the gear ratio ml2 = N2/N1 of the face gear. It is recommend that m12  > 4 be used to obtain
c > 10.

Localization of Bearing Contact

When the number of shaper teeth equals the number of pinion teeth, misalignment may cause the separation
of the face-gear teeth and the pinion and then the loss of their edge contact. To avoid this defect, it becomes
necessary to localize the bearing contact between the pinion and the face gear. This localization can be achieved
by applying a shaper with the tooth number Ns > Np so that Ns − Np = 1−3, where Np is the pinion tooth number.
Another approach is based on varying the tool plunging (grinding disk or cutter) in the pinion generation process
(see section 2.2). In such an approach, Ns = Np.
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Figure 2.4.5.—Tooth of face gear in three-dimensional
   space.
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Results of Tooth Contact Analysis (TCA)

A computer program  has enabled researchers to investigate the influence of the following alignment errors:
∆Ε, the shortest distance between axes that are crossed but are not intersected; ∆q, the axial displacement of the
face gear; ∆γ, the change in the shaft angle formed by intersected axes. It was discovered that such alignment
errors do not cause transmission errors, which is the great advantage of using a face-gear drive with an involute
pinion. However, such errors cause a shift in the bearing contact, as shown in figure 2.4.6. If the pinion is
generated by a plunged tool (see sec. 2.2), there is a good possibility of compensating for this shift due to the
axial displacement of the pinion.

2.5 Development of Geometry of Face-Milled Spiral Bevel Gears

Introduction

An important contribution of The Gleason Works engineers is the development of spiral bevel gear drives
and hypoid gear drives with localized bearing contact and parabolic-type transmission errors (Stadtfeld, 1993,
1995). The research conducted at the Gear Research Laboratory of the University of Illinois at Chicago (Litvin
et al., 1996b; Litvin, Wang, Handschuh, 1996; Zhang, Litvin, and Handschuh, 1995) was directed at the
modification and improvement of the existing geometry of spiral bevel gears. The developed projects covered
two types of face-milled spiral bevel gears: uniform teeth and tapered teeth.

Modification of Geometry of Spiral Bevel Gears With Uniform Teeth

Theoretically, ideal spiral bevel gears with zero transmission errors can be generated if the following
conditions are observed:

(1) Two imaginary generating surfaces are rigidly connected to each other and separately generate the pinion
and gear tooth surfaces. The generating surfaces are mismatched but they are in tangency along a line. The
generating surfaces produce spiral bevel gears with a constant tooth height.

(2) Two types of bearing contact are provided by this method of generation:
(a) The mismatched generating surfaces Σt l and Σt2 are two cones in tangency along a common generatrix

(fig. 2.5.1). The difference in mean radii Rp and Rg determines the mismatch of the generating surfaces. The
bearing contact is directed across the tooth surfaces.

(b) The mismatched generating surfaces Σt2 and Σt l are a cone and a surface of revolution in tangency along
a circle of radius Rg = Rp (fig. 2.5.2). The axial section of the surface of revolution is a circle of radius Rl. The
bearing contact of the generated spiral bevel gears is directed along the tooth surfaces.

Figure 2.4.6.—Localized bearing contact; DN = 3;
   DE = 0.1 mm.

Major axis of
contact ellipse
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These generation methods provide conjugated tooth surfaces that are in point tangency at every instant.
However, in reality such methods cannot be applied because the generated spiral bevel gears are sensitive to
misalignment that will cause a shift in bearing contact and the transmission errors of the type shown in
figure 1.14.1(b). Such transmission errors are the source of vibrations.

Low-Noise Spiral Bevel Gears With Uniform Tooth Height

Litvin, Wang, and Handschuh (1996) show that the defects in gearing just discussed can be avoided by the
application of the generation method which requires that a couple of the generating surfaces be in point contact
and that the surfaces be properly mismatched (fig. 2.5.3). The gear generating surface is a cone, and the pinion
generating surface is a surface of revolution. The gear cutting blades are straight-line blades (fig. 2.5.4); the
pinion cutting blades are circular arcs (fig. 2.5.5). The method of local synthesis developed in Litvin (1994) and
applied for spiral bevel gear generation enables us to determine those design parameters of the generating
surfaces and machine-tool settings that provide a predesigned parabolic function of transmission errors and a
stable bearing contact. Figure 2.5.6 shows transmission errors caused by ∆γ = 3 arc min when the generating
surfaces are in line contact but are not in point contact and the surfaces are not mismatched to provide a
predesigned parabolic function of transmission errors. Figure 2.5.7 shows the resulting transmission error
function as the interaction of the predesigned parabolic function and the transmission error function caused by
∆γ . The predesigned parabolic function was obtained by observing the following conditions: (1) the generating
surfaces are in point contact (but are not in line contact); (2) the surfaces are properly mismatched to provide
a predesigned parabolic function of transmission errors. Figure 2.5.8 shows the bearing contact for a misaligned
gear drive.

Low-Noise Spiral Bevel Gears With Tapered Teeth

The geometry of low-noise spiral bevel gears with tapered teeth is presented in Zhang, Litvin, and Handschuh
(1995). The authors of the project proposed an approach that was based on the application of two generating
cones being in point contact. By applying the proposed method of local synthesis, the authors determined design
parameters of the generating surfaces and machine-tool settings that enabled them to obtain a localized bearing
contact and a predesigned parabolic function of transmission errors of a low level, 8 to 10 arc sec.

Prototypes of these gears were manufactured by the Bell Helicopter Company and were then tested at The
Gleason Works and at the NASA Lewis Research Center. The test results proved that the noise level was reduced
by 18 dB from the total level of 90 dB in comparison with the existing design (fig. 2.5.9).
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Figure 2.5.1.—Application of two generating cones.
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Figure 2.5.2.—Application of generating cone and
   generating surface of revolution.
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Figure 2.5.5.—Convex and concave sides of generating blades and pinion generating surfaces of
   revolution.
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Figure 2.5.6.—Transmission errors for misaligned
   gear drive; Dg = 3 arc min.
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Figure 2.5.7.—Transmission errors for misaligned
   gear drive with mismatched gear tooth surfaces;
   Dg = 3 arc min.
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2.6 Modification of Geometry of Worm-Gear Drives With Cylindrical
Worms

Introduction

Worm-gear drives with cylindrical worms are applied for the transformation of rotation between crossed axes
when a large gear ratio is required. The worm is similar to a helical gear whose number of teeth is equal to the
number of threads on the worm. Figure 2.6.1 shows the cross section of a three-thread worm. The existing
geometry of gear drives provides at every instant a line contact between the ideal surfaces of the worm and the
worm gear. This contact can be achieved by simulating the meshing of the hob and the worm gear being
generated. However, in reality a line contact cannot be provided because of gear drive misalignment and
manufacturing errors. Errors of alignment and manufacture cause the surfaces to be in point contact instead of
line contact accompanied by a shift of the bearing contact to the edge (fig. 2.6.2) and transmission errors of the
shape shown in figure 1.14.1(b). In the case of multithread worm drives, such transmission errors may cause
impermissible vibrations. A suitable bearing contact can be obtained by running the worm-gear drive under a
load while the hardened worm removes particles of materials from the much softer surface of the worm gear.
However, such a process is time consuming, may not substantially reduce the transmission errors, and does not
change their shape. These are the reasons for modifiying the existing geometry of worm-gear drives (Seol and
Litvin, 1996a, 1996b).

Brief Description of Existing Geometry of Worm-Gear Drives

The existing types of worm-gear drive geometry may be divided into two groups: (1) worms that are
generated by blades and (2) worms that are ground (Litvin, 1994). Figures 2.6.3 and 2.6.4 show the installment
of straight-line blades for the generation of ZA- and ZN-worms, respectively. The blades are installed in the
axial section (for ZA-worm generation) and in the normal section (for ZN-worm generation).

The ground worms may be differentiated thus: ZI-worms (involute), which may be ground by a plane and
are manufactured by the David Brown Company; ZF-worms, which are discussed separately in the next
paragraph; and ZK-worms, which are cut or ground by a cone (fig. 2.6.5). The installment of the generating tool
with respect to the worm is shown in figure 2.6.6. During the process of generation, the worm performs a screw
motion about its axis with parameter p. The installment angle γc is usually chosen as γc = λp, where λp is the worm
lead angle.
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Figure 2.5.9.—Results of noise reduction.
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Figure 2.6.1.—Cross section of three-thread worm.

Figure 2.6.2.—Shift of bearing contact in misaligned worm-gear drive.

Figure 2.6.3.—Generation of ZA-worms.

Figure 2.6.4.—Generation of ZN-worms. 
   (a) Thread generation. (b) Space generation.

(a)

(b)
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The generation of the ZF-worms (Flender worms) is based on the application of a grinding disk whose axial
section is represented in figure 2.6.7(a). The axial profile of the tool is a circular arc. The worm in the process
of generation performs a screw motion about its axis. The line of tangency between the surfaces of the grinding
disk and the worm surface is a spatial curve. However, this line of tangency might be a planar curve that
coincides with the axial profile α−α  (fig. 2.6.7(b)) if special machine-tool settings are provided (proposed in
Litvin, 1968).

Modification of Geometry of Worm-Gear Drives

Worm-gear drives with the existing geometry are very sensitive to misalignment. Errors in misalignment
cause a shift in the bearing contact, as shown in figure 2.6.2. This defect can be avoided by applying an oversized
hob (Colbourne, 1993; Kovtushenko, Lagutin, and Yatsin, 1994; Litvin et al., 1996b; Seol and Litvin, 1996a,
1996b).The principles of this application follow:

(1) The oversized hob and the worm are considered as two helical gears in internal tangency (fig. 2.6.8).
Conjugated surfaces of the hob and the worm can be provided because they are simultaneously in mesh with
a common rack.

(2) The application of an oversized hob enables one to localize the bearing contact since the surfaces of the
worm and the worm gear generated by an oversized hob are at every instant in point contact, not in line contact.
The bearing contact is localized and is in the middle area of the worm-gear tooth surface (fig. 2.6.9).

The localization of bearing contact in Flender worm-gear drives does not guarantee a reduction in magnitude
and a  favorable shape of transmission errors (fig. 2.6.10(a)). It was shown in Seol and Litvin (1996a) that a
parabolic function error for Flender worm-gear drives (fig. 2.6.10(b)) can be provided by varying the process
for generating the distance between the axes of the hob and the worm gear or by modifying the shape of the
grinding disk. A computerized investigation of a misaligned worm-gear drive with surfaces in line
contact is a complex problem, as explained in section 1.11.

A computerized investigation of a worm-gear drive generated by an oversized hob requires two stages of
computation: (1) a determination of the worm-gear tooth surface generated by the oversized hob, a case in which
the hob and worm-gear surfaces are considered to be in line contact; (2) a simulation of the meshing and contact
of the worm-gear tooth surface and the worm thread that are in point contact. Such computer programs were
developed by Seol and Litvin (1996a, 1996b).

Figure 2.6.5.—Tool for generation of ZK-worms.
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Figure 2.6.6.—Tool installment and generation of ZK-worms.
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Figure 2.6.7.—Grinding of ZF-(Flender) worms. (a) Installment of grinding disk. (b) Disk axial profile.
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Figure 2.6.8.—Pitch cylinders of oversized hob and worm.
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Figure 2.6.10.—Transmission errors of misaligned, modified Flender worm-gear drive. (a) No plunging.
   (b) Plunging (a = 0.03; DE = 0.1 mm; Dg = 3.0 arc min).
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Figure 2.6.9.—Path of contact and bearing contact of
   misaligned ZI-worm-gear drive; DE = 0.1 mm; Dg =
   1.0 arc min.
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2.7 Face Worm-Gear Drives

The face-gear drives discussed in this section were formed by a cylindrical or conical worm and a face gear.
These types of gear drives were invented by O.E. Saari and are described in Saari (1954, 1960). They were the
subject of research conducted by the inventor and other researchers whose results are presented in Goldfarb and
Spiridonov (1996), Kovtushenko, Lagutin, and Yatsin (1994), and in many other papers. This section presents
the results of research conducted at the Gear Research Laboratory of  the University of Illinois at Chicago by
F.L. Litvin, A. Egelja, and M. De Donno. The goals of the research projects were (1) to provide a computerized
design that enables one to avoid the undercutting and pointing of face worm gears, (2) to effect the localization
of bearing contact, and (3) to accomplish a reduction in magnitude and a transformation of the shape of the
transmission error function into a favorable one (see section 1.14). The cause of the the transmission errors was
considered to be misalignment. Special attention was given to the simulation of meshing and the contact of
misaligned gear drives by developed TCA (Tooth Contact Analysis) computer programs.

Saari’s invention was limited to the application of ZA-worms (with straight-line profiles in the axial section)
and the transformation of rotation between crossed axes only. The research of Litvin, Egelja, and
De Donno was extended to the application of other types of worm thread surfaces and the transformation of
rotation between intersected axes (in addition to the case of the crossed axes of rotation).

Figures 2.7.1 and 2.7.2 show respectively (1) a face worm-gear drive with a cylindrical worm and intersected
axes of rotation and (2) a face worm-gear drive with a conical worm and crossed axes of rotation.

We have to emphasize that pointing is much easier to avoid in face worm-gear drives in comparison with
conventional face-gear drives because of the application of screw thread surfaces with different pressure angles
for the driving and coast tooth sides and relatively small lead angle values. The width of the topland of a face
worm-gear varies in a permissible range and does not equal zero.

A detailed investigation to detect singularities based on the ideas presented in sections 1.4, 1.6, and 1.7
enabled us to discover that the singular points on a face worm-gear tooth surface form an envelope Er to the
contact lines that is simultaneously the edge of regression (fig. 2.7.3). Eliminating Er from the surface of the
face gear guarantees the avoidance of undercutting.

One of the important problems in designing face worm-gear drives is the localization of bearing contact and
the predesign of a parabolic function of transmission errors. Based on the initial results of completed
investigations, the authors of these research projects consider a promising solution to be the combination of
profile and longitudinal deviations of the worm thread surface. These deviations are with respect to the

Figure 2.7.1.—Face worm-gear drive with intersected axes.
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theoretical worm thread surface that corresponds to the instantaneous line contact of worm and face worm-gear
tooth surfaces.

One of the great advantages of the face worm-gear drive is the increased strength of the worm in comparison
with the spur pinion of a conventional face-gear drive.

Figure 2.7.2.—Face worm-gear drive with conical worm.

1
2

3

4

Figure 2.7.3.—Concave side of face worm-gear
   surface. (1) and (2) Surface branches. (3) Contact
   lines. (4) Envelope to contact lines and edge of
   regression.
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2.8 Development of Cycloidal Gearing

Introduction

Cycloidal gears were initially used in watches. The profiles of these gears were represented as conventional
and extended epicycloids and hypocycloids, the curves of which are traced out by the point of a generating circle
of radius ρ  that rolls over another circle of radius r (Litvin, 1994; Litvin and Feng, 1996). Circles of radii ρ
and r may be in external and internal tangency.

Cycloidal gearing has found new applications in Wankel engines, Root’s blowers, and screw compressors.
In this section, these types of cycloidal gearing receive attention.

Pin Gearing: Internal Tangency of Centrodes

Figure 2.8.1 shows that the gear centrodes are circles of radii r1 and r2 in internal tangency with point I being
the instantaneous center of rotation. The pin of radius ρ is rigidly connected to centrode 1. Curve Σc (an extended
hypocycloid) is traced out in S2 by point C of the pin while centrode 1 is rolling over centrode 2. Coordinate
systems Sl and S2 (not shown in the figure) are rigidly connected to centrodes 1 and 2. Theoretically, point C
and Σc can be considered conjugate profiles of links 1 and 2 of the gearing. In reality, the pin and curve Σe, which
is equidistant to Σc, are used as conjugate profiles. Curves Σe and Σe* are the two envelopes to the family of pins
that are generated in coordinate system S2, as seen in the example of figure 2.8.2. Another example of pin
gearing (fig. 2.8.3) is based on the internal tangency of the envelope Σe* with the pin.

Figures 2.8.4 and 2.8.5 show the schematic of the Wankel engine, which is based on the internal tangency
of the envelope Σe* with the pins. The chamber shape is determined by the envelope Σe* (see also fig. 2.8.1).
The pins of the rotor may be connected as shown in figure 2.8.5. The connecting curve must be inside the space
that is swept out in the chamber by the pins of the rotor, as shown in figure 2.8.6. The application of this pin
gearing in Wankel’s engine requires the avoidance of singularities in the engine chamber (Litvin and Feng,
1997).

Pin Gearing: External Tangency of Centrodes

A particular case of pin gearing is the Root’s blower (Litvin, 1968; Litvin and Feng, 1996). The gear ratio
is 1, and the two centrodes of the same radius r are in external tangency (fig. 2.8.7). The rotors are designed
with two or three lobes. The “tooth” of the rotor is the combination of a pin that represents the addendum and
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Figure 2.8.1.—Generation of pin gearing by internal
   tangency of centrodes.
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Figure 2.8.2.—Planar cycloidal gearing with external
   tangency of envelope Se and pin teeth.
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Figure 2.8.3.—Planar cycloidal gearing with internal
   tangency of envelope Se and pin teeth.*

Figure 2.8.4.—Wankel's chamber and rotor.
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Figure 2.8.5.—Wankel's engine.
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Figure 2.8.6.—Determination of space swept out in
  chamber by pins.
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Figure 2.8.7.—Root's blower. (a) With two lobes. (b) With three lobes.
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a concave curve that is conjugated to the pin of the mating rotor. The design requires that in a certain range the
parameter ratio a/r be observed to avoid singularities of the dedendum profile (Litvin and Feng, 1996).

Cycloidal Gearing of Screw Rotors of Compressors

Screw compressors, in comparison with conventional compressors that are based on the application of a
crank-slider linkage, enable the compressor to operate with an increased rotor angular velocity and to obtain
a higher compression. However, the application of screw compressors requires that the rotor surfaces be
conjugated (Litvin and Feng, 1997).

The cross sections of screw rotors are shown in figure 2.8.8. The profiles of the rotors (fig. 2.8.9) are
synthesized so that the rotor surfaces are in tangency at two contact lines. The synthesis is based on the following
considerations:

(1) The profile of driving rotor 1 (fig. 2.8.9(b)) is combined by curves σ1
(1) and by symmetrically located

curves σ1
(2) and σ1

(3). Points A1 and A2 indicate the points of tangency of σ1
(1) with σ1

(2)and σ1
(3), respectively.

(2) Profile σ1
(1) is designed as an elliptical curve, and σ2

(1) (fig. 2.8.9(a)) is the profile of the driven rotor that
is conjugated to σ1

(1). The meshing of the rotor surfaces with profiles σ1
(1) and σ2

(1) provides the first instantaneous
line of tangency of the rotor surfaces.

(3) Curves σ1
(2) and σ1

(3) of rotor 1 are epicycloids that are generated by points B1 and B2 of the driven rotor
(fig. 2.8.9). The second contact line of the rotor surfaces is the edge of rotor 2 (a helix of the screw surface of
rotor 2). To reduce the wearing, the profile of rotor 2 may be rounded at the edge (Litvin and Feng, 1997).

Figure 2.8.8.—Cross sections of screw rotors.
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Chapter 3

Biographies and History of Developments

3.1 Introduction

Visitors coming to the Gear Research Laboratory of the University of Illinois in Chicago are invited to see
the Gallery of Fame, a photographic collection of gear company founders, inventors, and researchers who
devoted their careers to the study and development of gears. This collection is unique because retrieving items
and information for the gallery was a difficult task. Time had destroyed documents and memories of the many
contributors who were deceased, requiring much detective work of the author who desired that these creative
men be credited for their valuable contributions. In his effort to personalize these biographies, he sometimes
had to find and then contact relatives, to search for information in libraries, and to communicate with gear
company management to trace a predecessor’s activities. The reader will have the opportunity to see, perhaps
for the first time, the photographs of Samuel Cone, one of the inventors of the double-enveloping worm-gear
drive; Ernst Wildhaber, one of the most successful inventors of gears; Dr. Chaim Gochman, the Russian scientist
and founder of the gear theory; Dr. Hillel Poritsky, the American mathematician; Dr. Alexander Mohrenstein-
Ertel, the founder of the hydrodynamic theory of lubrication; and many others who significantly contributed
to this field.

The author hopes that the biographies of these men will give the reader an opportunity to learn more about
their lives through their thoughts, successes, and tribulations.
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3.2 Johann Georg Bodmer—Inventor, Designer, and Machine Builder
(1786–1864)

The memorial plaque on the house at 12 Muhlegasse Street in Zurich,
Switzerland bears the name of a former resident and distinguished engineer
and inventor, Johann Georg Bodmer. We thank the Verein für
Wirtschaftshistorische Studien of Switzerland and R. Gardner (1941) for
providing valuable information about the pioneering work of this remarkable
man. Fortunately, Bodmer’s descendants, devoted to their famous forefa-
ther, preserved his drawings and diaries for history.

Johann Georg Bodmer came from a family of skilled handymen who
traced their history in Switzerland for more than 400 years. Members of this
family were experienced stonecutters and textile workers. The young Bodmer
graduated from the School of Art of  Zurich when he was only 16, but he was
highly motivated, talented, and creative and educated himself through
experience. His inventions dealt with the textile industry, steam machines,
locomotives, drives for ships, cannons, and various metal-cutting machines,
including gear-cutting machines. Some of the machines that were designed

for the production of tools used to manufacture screws and nuts were developed by successful cooperation with
his son-in-law Jacob Reishauer, one of the founders of the Reishauer Company.

Of special interest to gear engineers is that Johann Bodmer designed and manufactured spur gears with the
ratio of 145 to 15, bevel gears, and helical gears. His achievements in the field of gears and in other areas of the
machine industry were related to his remarkable ability to design tools.

Undoubtedly, Johann Bodmer was in advance of his time and full recognition of his genius came later and
not in his lifetime.
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3.3 Friedrich Wilhelm Lorenz—Doctor of Engineering, h.c. and
Medicine, h.c., Inventor, and Founder of the Lorenz Company
(1842–1924)

The life of Friedrich Wilhelm Lorenz is best described by the title of his
biography Ein Leben für die Technik (A Life for the Technique), written by
Dr. Susanne Pach-Franke (1990). Wilhelm Lorenz, an inventor and success-
ful entrepreneur, was a self-made man who was born in 1842 in Geseke, a
small German city. His father’s position as court manager provided the
family with very little income so that after his sudden death, Wilhelm could
not continue his high school education and had to work when he was only 13
years old. This biography covers the four stages of his career: (1) the first
years of training, (2) his work for the military branch of industry, (3) the
production of Daimler’s motors, and (4) the founding of a company to
manufacture gear production equipment.

Wilhelm’s professional training began with his apprenticeship to a black-
smith. His outstanding creativity was immediately revealed when he auto-
mated the production of nails. Later, in 1860, he obtained a position at Funcke
and Hueck in Hannover where he was recognized as a gifted designer by the

company’s owner, Wilhelm Funcke, whose great affection for the young Lorenz paved the way for him to
continue his professional training in Berlin.

For a talented man, education is like a diamond cutter who awakens the brightness and shine of the jewel.
Wilhelm Lorenz worked hard to educate himself and, not surprisingly, in 1870 was hired as an engineer by
Georg Egerstorff of the Percussion Cap Company. There he learned the technological principles of the machines
and tools used in the military branch of industry and automated high-precision manufacturing. In 1875, he took
a position at the Cartridge Case Company of Henri Ehrmann and Cie in Karlsruhe where after only 2 years he
became the company’s technical manager and then its owner.

Although his career in industry was very successful, his desire to create led him to consider manufacturing
car engines invented by Daimler. Lorenz’ description of this period of his life was short and impressive:
“Daimler invented motors for cars, but I, Lorenz, gave life to the cars.”

The last period of Lorenz’ life will be particularly interesting to gear specialists. Initially, he was interested
in and concentrated on the production of double-enveloping worm-gear drives and in 1891 invented methods
to generate the worm and the gear of the drive. Having received two patents for this work, it was not a surprise
that the worm-gear drive was his favorite invention and that, inspired by Julius Grundstein, Lorenz’ company
in Ettlingen specialized in the production of gear equipment. At the end of the 19th century, the company had
become uniquely experienced in designing and producing precise metal-working machines, and in 1906 Julius
Grundstein became its technical director. One of the first tests of the company’s new direction was the design
and production of a giant gear-cutting machine for gears having diameters up to 6 m, modules up to 100 mm,
and tooth lengths up to 1.5 m.

In 1990, the Lorenz Company celebrated its 100th anniversary and is presently well known in the industry
as a manufacturer of precise shaping machines for the production of external and internal involute gears, helical
involute gears, chain-drive gears, and other special-profile gears (e.g., face gears) that can be generated by a
shaper. The company also produces noncircular gears using CNC machines to execute the related motions of
the shaper and the noncircular gear being generated (see ch. 12 in Litvin, 1994).

Wilhelm Lorenz’achievements gained him the well-earned recognition of his contemporaries. In 1910,
Karlsruhe University awarded him an honorary degree of doctor of engineering, and Heidelberg University awarded
him an honorary degree of doctor of medicine for his outstanding work in the manufacture of prostheses.

Dr. Lorenz’s life was darkened by several tragic events. His infant son and his young wife died from
tuberculosis, and his other son was killed in an accident at age 12. He devoted his life to his daughter Ada and
to his pioneering work. He is survived by Ada’s two granddaughters.

Although Dr. Lorenz did not want a gravestone and asked that his ashes be scattered by the wind, this
remarkable man is remembered today in Geseke and Karlsruhe where streets bear his name and in Ettlingen
where a school is named for him. However, the best memorial to his life in Ettlingen is his name on the company
he founded.
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3.4. Robert Hermann Pfauter—Inventor and Founder of the Pfauter
Company (1854–1914)

The end of the 19th and the beginning of the 20th century was the “golden”
era of pioneering developments in gear manufacturing. In 1897, Robert
Hermann Pfauter invented the process and machine for generating spur and
helical gears by hobs. Two other inventions were based on the application
of shapers and rack-cutters (see secs. 3.5 and 3.6 on Erwin R. Fellows and
Dr. Max Maag). These inventors were pioneers in creating gear-producing
automotive machines based on the continuous relation of motions between
the generating tool and the gear being generated. Such machines provide
continuous indexing and generate the gear tooth surface as the envelope to
the family of tool surfaces.

Robert Hermann Pfauter was born in 1854 to a farm family in Goeltzschen,
a village near Leipzig in Saxony. Fortunately for the future of the gear
industry, he pursued technology rather than farming because of the prom-
ising opportunities resulting from the industrial revolution. He began his
professional career as a machinist and then continued his education at

Hainichen Technical College near Chemnitz. He graduated with an engineering degree and went to work for
the well-known machine tool companies Birnatzki and Zimmermann, Hartmann, and Reinecker.

Pfauter’s employers soon recognized his talent and promoted him to higher positions, first as the principal
design engineer at the Reinecker Company and then (at only age 39) as the technical executive director of the
Chemnitz Knitting Machine Works (later known under the name of Birnatzki).

The process of invention is a mystery and its crowning moment like a lightning bolt. For many years, Robert
Hermann Pfauter noted the disadvantages of the existing manufacturing process for spur and helical gears:
(1) the necessity of indexing the gear for the generation of each tooth space and (2) the generation of the tooth
space only as a copy of the tool surface. His patent for generating spur and helical gears was free of these
disadvantages and although it claimed to be limited to the generation of helical gears, it could actually be applied
to the generation of spur and worm gears by hobs. In this respect, Pfauter was the precursor of a group of
inventors who later proposed other gear generation processes based on principles similar to those proposed in
his patent.

Success in real life, unlike that in fairy tales, is a road of roses and thorns. It sounds trivial that there are no
roses without thorns but this was true of Pfauter’s invention. He encountered many technical and financial
obstacles while trying to prove his theories and was tempted to abandon his risky invention and go back to the
safe work of a technical director. He decided otherwise, built the prototype of the machine in 1889, and finally
in 1905 saw the Pfauter Company become a prosperous business. From its beginning to the spring of 1913, it
manufactured 2000 machines, many of which were imported to the United States.

The engineering community recognized Pfauter as a brilliant man who designed, built, and produced for
industry the machine he invented. He was remembered after his death in 1914 in an article in Chemnitzer
Volksstimme (10/14/1914) not only as a distinguished inventor but also as an employer beloved by his
coworkers.

In the last 25 years, the Hermann Pfauter Company has become a multinational enterprise known as the
Pfauter Group, serving the gear manufacturing community in many countries. At present it offers equipment
for many gear manufacturing stages such as hobbing, shaping, hard skiving, shaving, honing, and milling. The
company also produces cutting tools, noise-testing equipment, and a new generation of high-precision
machines, including CNC gear grinding machines. The Pfauter Group’s activity is proof that its founder
successfully developed it.
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3.5 Edwin R. Fellows—Inventor and Founder of the Fellows Gear
Shaper Company (1865–1945)

Edwin R. Fellows, another pioneer during the “golden” era of gear
manufacturing, invented a revolutionary method to generate gears by shap-
ing. His method is based on the simulation of two gears meshing during gear
rotation about two parallel axes, which is in contrast to two other inventors
who based their methods on hobs and rack-cutters (see secs. 3.4 and 3.6 on
Robert Hermann Pfauter and Dr. Max Maag).

The manufacture of spur gears by shaping originated at the Fellows Gear
Shaper Company in Springfield, Vermont in 1896. Fellows’ invention was
a significant contribution because it enabled the automation of the internal
and external gear manufacturing process. The automotive industry’s broad
application of the Fellows gear shaper process confirmed the importance of
the invention. Continued development produced machines capable of gen-
erating helical and face gears.

In 1897, the Fellows Company designed and built a machine for grinding
involute profiles on gear shaper cutters. This process was later recognized for

its application in grinding the various tooth profile cutters that were used to shape spur, helical, and special tooth
profile gears.

During the Second World War, the Fellows Company was awarded the distinguished Army-Navy
Production Award for its outstanding contribution. Today, the Fellows Gear Shaper Company continues to
prosper by designing and building innovative CNC machines with its latest Hydrostroke Gear Shaper, all of
which attests to the importance of Edwin R. Fellows’ pioneering innovations.
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3.6 Max Maag—Doctor of Engineering, h.c., Inventor, and Founder of
the Maag Company (1883–1960)

The son of a village teacher in Flurlingen at Zurich, Max Maag attended
the Zurich Polytechnicum but later decided to study machine design at the
Oerlikon Company. Soon after, he became a designer at the Kaspar Wust
plant. From 1908 to 1913, Dr. Max Maag’s contributions helped to distin-
guish him in the field of gearing. In 1908, he developed the geometry of
nonstandard involute spur and helical gears, which enabled designers to
avoid undercutting and to increase the tooth thickness by just modifying the
installation of the tool (the rack-cutter) with respect to the gear being
generated. His research led to the development of the Maag system of
generating nonstandard involute gears. In this system, he applied the method
and machine invented by Samuel Sunderland of Kieghley, York, in Great
Britain and in 1909 received the first patent for cutting nonstandard involute
gears based on the application of Sunderland’s machine. The advantage in
generating gears by a rack-cutter was that it was a simpler and more precise
tool than a hob and a shaper.

The next 3 years were milestones in Maag’s career. In 1910 he made a very courageous decision to open a
small workshop to produce nonstandard involute gears with modified Sunderland’s machines. The first gears
cut according to the Maag method were delivered in 1911, and patents were granted in 14 countries. In 1913
he founded the Maag Gear Wheel Company Ltd. and remained its managing director until his retirement in 1927
when the company was reorganized. Today, Maag machines have a reputation for quality and high-precision
manufacturing and for the production of large-dimension gears.

A significant achievement of the Maag Company was the development of the method to grind spur and
helical involute gears. The grinding tool was a saucer-shaped wheel with a 15° profile angle, a prototype of
which was built in 1913. This invention was important because it provided the first automatic compensation
for the wear of the grinding wheel, making it the first and most famous automatic control system in the machine
tool history.

Several other contributions of the Maag Company made its name well known in the gear industry. In 1950,
the method of grinding spur and helical gears by a plane was invented. The originality of the idea lay in the
application of two grinding planes with a zero pressure angle, each plane simulating the surface of a rack tooth
with a zero pressure angle.

In recognition of his significant contributions to the design and manufacture of gears, the Swiss Federal
Institute of Technology in Zurich awarded him an honorary doctorate in 1955.

Dr. Maag devoted his life and creativity to investigating gears, as illustrated by his grave marker, which
shows the meshing of a rack and an involute gear.
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3.7 Earle Buckingham—Professor of Mechanical Engineering, Gear
Researcher, and Consultant (1887–1978)

Prof. Earle Buckingham is one of the founders of the theory of gearing and
gear design and made significant contributions to this area. His monographs
gained him international recognition in addition to the great respect he had
already earned in English-speaking countries.

Earle Buckingham was born in 1887 in Bridgeport, Connecticut. He
attended the United States Naval Academy in Annapolis, Maryland from
1904 to 1906 and then began to work in industry. In 1919, he directed his
research and science interests to the field of gears, initially as a gear
consultant for the Niles-Bement-Pond Company (now Pratt & Whitney) and
then from 1925 to 1954 as a professor of mechanical engineering at the
Massachusetts Institute of Technology in Cambridge, Massachusetts. After
retirement, he continued his research activity as a gear consultant.

Prof. Earle Buckingham’s books (e.g., Analytical Mechanics of Gears,
1963) laid the foundation for the theory of gearing and became references for
at least two generations of engineers and researchers. The engineering

community recognized his contributions to the design and theory of gears by presenting him these prestigious
awards: the American Society of Mechanical Engineers (ASME) Worcester Reed Warner Medal, 1944; the
American Gear Manufacturers Association (AGMA) Edward P. Connel Award, 1950; the American Society
of Test Engineers (ASTE) Gold Medal, 1957; the Gold Medal of the British Gear Manufacturers Association,
1962; and the Golden Gear Award of Power Transmission Design magazine in commemoration of the AGMA
50th Anniversary. Also in recognition of his contributions, Buckingham lectures are delivered at the USA
Power Transmission and Gearing conferences.
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3.8 Ernst Wildhaber—Doctor of Engineering, h.c., Inventor, and
Consultant for The Gleason Works (1893–1979)

Ernst Wildhaber is one of the most famous inventors in the field of gear
manufacture and design. He received 279 patents, some of which have a
broad application in the gear industry because of his work as an engineering
consultant for The Gleason Works. Dr. Wildhaber’s most famous inven-
tions are the hypoid gear drive, which is still used in cars, and the Revacycle
method, a very productive way to generate straight bevel gears.

Dr. Wildhaber graduated from the Technische Hochschule of Zurich
University in Switzerland and then came to the United States in 1919. In
1924, he went to work for The Gleason Works where he began the most
successful period of his career as a creative engineer and inventor.

Some of Wildhaber’s former colleagues from The Gleason Works have
recounted how deeply impressed they were with his creativity, imagination,
almost legendary intuition, and alacrity. This last characteristic was even the
source of a colleague’s complaint that Wildhaber was not as patient as
university professors while giving explanations. Could it be that he expected

his coworkers to comprehend at the same speed as his thoughts? They remembered that he even sped up the
stairs, taking two steps at a time.

Wildhaber’s inventions reveal signs of his originality. He proposed different pressure angles for the driving
and coast tooth sides of a hypoid gear, which allowed him to provide constancy of the tooth topland. Wildhaber’s
invention milestone was the Revacycle and the unusual shape of the tool based on the location of blades on a
spatial curve. His theoretical developments (Wildhaber, 1946a, 1946b, 1946c, 1956) also display his original-
ity; for example, he found the solution to avoiding singularities and undercutting in hypoid gear drives.

Ernst Wildhaber’s talent was recognized not only in the United States but also by the world engineering
community and particularly by his alma mater, Zurich University, which awarded him an honorary doctorate
in engineering in 1962.
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3.9 Hillel Poritsky—Doctor of Mathematics, Professor of Applied
Mechanics, and Consultant (1898–1990)

A prominent mathematician, Dr. Hillel Poritsky made significant contri-
butions to the fields of applied mathematics, the theory and geometry of
gears, stress analysis, fluid dynamics, and electromagnetics. He authored or
coauthored more than 100 scientific papers. One of his major interests was
gear research, about which he and Darle Dudley wrote several papers
dealing with the theory, geometry, and generation of worm-gear drives and
helical gears. These pioneering works (e.g., Dudley and Poritsky, 1943)
were ahead of their time and made a valuable contribution to gear research.
Dr. Poritsky also conducted research on the hydrodynamic theory of gear
lubrication.

Hillel Poritsky is an example of an immigrant who came to the United
States, pursued an education, devoted himself to his career, and contributed
greatly to science and society. Born in Pinsk, Belorussia, he lost both his
parents before he was 5 and was raised by older sisters in conditions of
poverty. He came to the United States when he was 15, not knowing a word

of English and only able to order a meal in a cafe by pointing to the lowest priced items on the menu. However,
he was a person of great intellectual ability and drive and became a distinguished scientist.

After graduating from Morris High School in the Bronx in New York City, Dr. Poritsky went to Cornell
University where his ability in mathematics and physics was soon recognized. Even before he received his
bachelor’s degree in 1920, he became an instructor. Also, during and after the First World War, he was on the
staff of the United States Army Proving Ground in Aberdeen, Maryland where he used these abilities to solve
problems. In 1927, he received his doctoral degree in mathematics from Cornell and in the same year
went to Harvard as a National Research Council Fellow. Two years later in 1929, he joined the General Electric
Company in Schenectady, New York as a senior mathematician and consultant and worked there until he retired
in 1963.

Dr. Poritsky’s retirement mirrored his distinguished career in industry and academia. After he left General
Electric, he worked as a consultant for the United States Navy and for several companies and was also adjunct
professor at Rensselaer Polytechnic Institute in Troy, New York. In 1967, he was a visiting professor at the
University of Illinois Department of Theoretical and Applied Mechanics. In this same year, his achievements
in mathematics and applied mechanics were recognized by his contemporaries who awarded him the prestigious
Timoshenko Medal, making him the first recipient.

Dr. Poritsky was a member of several scientific societies: the American Society of Mechanical Engineers
(ASME), the American Mathematical Society, and the American Institute of Electrical and Electronic
Engineers. He was the chairman of the executive committee of the Applied Mechanics Division of the ASME.
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3.10 Gustav Niemann—Professor and Doctor of Mechanical
Engineering (1899–1982)

Gustav Niemann was a prominent scientist and educator in the field of
mechanism and machine design. He was born on February 9, 1899 in
Rheine/Westfalen, Germany. From 1919 to 1923, he studied mechanical
engineering at Darmstadt Technical University and received a doctor of
engineering degree in 1928. He worked for industry from 1923 to 1934 and
then held a professorship at Braunschweig University from 1934 to 1950.

From 1951 to his retirement, Niemann spent the last period of his career
at Munich Technical University where, as professor and head of the Institute
of Machine Elements and the Gear Research Center, he conducted success-
ful research and supervised 50 doctoral students. Many of these students
later obtained important positions at universities and in industry where they
disseminated and expanded Prof. Niemann’s ideas in Germany and through-
out the world.

He authored 150 scientific papers and a monograph on machine elements
and held 50 patents. Among the valuable contributions of Prof. Niemann and

his colleagues were the development of the concave-convex worm-gear drive (Niemann and Heyer, 1953),
theoretical and experimental investigations of the power loss and load capacity of worm-gear drives, the friction
of bearings, and the load capacity of gear materials.

After Prof. Niemann retired, his research at the Institute of Machine Elements and the Gear Research Center
was successfully continued first by Prof. Hans Winter and then by Prof. Bernd-Robert Hohn, who headed the
Institute and then the Research Center.

In recognition of Gustav Niemann’s valuable contributions, the engineering and scientific communities
presented him these awards: The Grashof Medal, the highest award of the VDI (Association of German
Engineers); the E.P. Connell Medal, the prestigious award of the American Gear Manufacturers Association
(Prof. Niemann was the first non-American recipient); an honorary doctorate from Berlin Technical University;
and an honorary membership in the Japan Society of Mechanical Engineers.
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3.11 Meriwether L. Baxter, Jr.—Gear Theoretician (1914–1994)

Meriwether L. Baxter was born in 1914 in Nashville, Tennessee. He
graduated from a Hartford, Connecticut public high school in 1931 and
entered Yale University. After his graduation in 1935, he pursued his
engineering and scientific work at The Gleason Works where he was the
chief research engineer and the director of engineering until he retired in
1975. He then worked as a consultant.

In his early years at The Gleason Works, Meriwether Baxter spent time
learning bevel and hypoid gear theory under Ernst Wildhaber’s supervision,
and Revacycle gears became his area of expertise. Then in the 1950’s, he
recognized that the computer could be a powerful tool in the area of gear
theory; it could relieve engineers of the long, tedious calculation procedures
needed to make machine settings for generating bevel and hypoid gears.
More important, he realized that with the computer and all its power, it was
practical to apply vector and matrix notations in the development of gear
theory and in doing so, he pioneered a new era in gear calculation and theory

(Baxter, 1961, 1973). With respect to computers, his most noted accomplishments were developing tooth
contact analysis (TCA), an undercut program and an exact duplex helical machine setting calculation procedure.
He also held seven patents relating to gears and gear manufacturing.

Meriwether Baxter was most concerned with education and training and spent much of his time ensuring
that the methods and theory he developed be preserved and passed on to the next generation of gear engineers.
To this end, Theodore Krenzer became his right-hand aid. All told, the contributions of Ernst Wildhaber,
Meriwether Baxter, and Theodore Krenzer to the theory of gearing laid the foundation for important research
that has continued successfully to the present.

Meriwether Baxter was a member and fellow of the American Society of Mechanical Engineers and a
member of the American Gear Manufacturers Association.
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3.12 Hans Liebherr—Doctor of Engineering, h.c., Designer, and
Founder of the Liebherr Group Companies (1915–1993)

Hans Liebherr was a gifted designer and the founder of several successful
industrial companies. He began his engineering career at his parents’
construction company where he designed a crane that was mobile, portable,
and easily assembled. This invention laid the foundation for the company he
later established to produce various types of construction equipment.
Eventually, Liebherr’s company became one of the largest of its kind in the
world.

Liebherr had a realistic perspective of technological advances and the
talent to choose the right direction for his company. For example, he founded
a division to produce aircraft equipment when he foresaw the future
importance of aviation. In turn, this led him to the gear field and he founded
a company that manufactured hobbing and shaping machines. Another
example of his technological perspective was adding CNC grinding ma-
chines to the product range in the late 1980’s.

In the early 1990’s Liebherr took over Maschinenfabrik Lorenz, which
manufactured gear shaping machines and cutters. The company’s latest development is a new generation of
CNC gear hobbing machines designed for hard metal and cermet tools for dry cutting. These machines have
been very well received and put on the market.

The great business success Hans Liebherr enjoyed did not change his personality. He remained a modest
man, did not like publicity, and concentrated all his efforts on designing and producing gear equipment. His
valuable contributions to German industry were recognized by Aachen University, which awarded him an
honorary doctorate of engineering in 1964.
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3.13 Alexander M. Mohrenstein-Ertel—Doctor of Engineering (1913–)

Alexander Ertel-Mohrenstein made a tremendous contribution to the
theory of hydrodynamic lubrication of loaded double-curvature surfaces.
His theory has been applied to determine the lubrication conditions of gear
tooth surfaces and bearings.

Alexander Ertel (Oertel was the original German spelling) was born to a
German family who had deep roots in Russian society. His great grandfather
Vasily Ertel, a doctor at Leipzig University, settled in Russia and became a
citizen in 1844. His descendants attained important positions in Russian
society and became hereditary gentlemen (dvorjane).

After graduation from high school, Alexander was admitted to the re-
nowned Lomonosov University in Moscow in 1936 where he studied
theoretical physics. His research in the hydrodynamic theory of lubrication
was very successful, and his two fundamental papers, upon the recommen-
dation of academician L.S. Leibenzon, were published in 1939 and 1945 in
the Proceedings of the Academy of Sciences of USSR, Department of

Technical Sciences. It is remarkable that his 1939 paper was published in the Proceedings while he was still a
student. He graduated in 1941 and with the endorsement of the famous physicist Peter L. Kapiza, became a
researcher at the Central Scientific Research Institute of Machine Industry (ZNIITMASH) in Moscow. While
he worked at ZNIITMASH, Ertel prepared to defend his Russian doctoral thesis, which summarized the results
of his research in 1945 and was presented in five seminars (1944–45) at the Institute of Machine Science of the
USSR Academy of Sciences. Ertel’s thesis was highly acclaimed by the Russian reviewers.

At the end of 1945, Dr. Ertel’s life took a dramatic turn. While under assignment to the Soviet ministry, he
visited Berlin-Pankow in East Germany (controlled by the Soviet Army) and decided to cross the border to the
English zone and settle in West Germany. Had it not been for the prominent English scientist Dr. Alastair
Cameron, who confirmed Ertel’s identity, he might not have been able to leave safely. Fortunately he did and
began the second period of his research.

In West Germany, Dr. Ertel’s scientific work was initially performed under the name of Alexander von
Mohrenstein and later under Mohrenstein-Ertel. From 1946 to 1948, working under the supervision of Prof.
Gustav Niemann at the Technical University of Braunschweig, he defended the German version of his doctoral
thesis in 1947. He  also conducted research at the Max Plank Institute of Gettingen and at the University of
Freiburg.

A tragic car accident in 1959 interrupted Dr. Mohrenstein-Ertel’s work; however, because of his wife’s
devotion and care, he has been able to continue in his private life.
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3.14 Darle W. Dudley—Gear Consultant, Researcher, and Author
(1917–)

In some cases a person’s contributions to a given field are not recognized
by his contemporaries but by others long after his death. Fortunately, Darle
W. Dudley did not have to wait for such recognition. In the field of gearing,
he has gained worldwide recognition by writing books, acting as chairman
of technical committees, writing standards for gear design, and promoting
gear research. Some of his books are Practical Gear Design (1954), Gear
Handbook (1962), The Evolution of the Gear Art (1969), Handbook of
Practical Gear Design, (1984), and Dudley’s Gear Handbook (edited by
D.P. Townsend, 1991).

Darle Dudley has written much about designing and manufacturing gear
drives that are adequate for many applications. Having conducted numerous
investigations of gear drives for large and small companies, he has become
a “pathologist” in analyzing drives that prematurely failed.

The Dudley family can trace its origin back more than 10 centuries to the
small English town of Dudley where the ruins of a medieval castle give

evidence of their past activities. From the standpoint of the Industrial Revolution, the castle is noteworthy
because the first piston engine was put into service in a mine beneath it.

Presently, thousands of Dudleys live in the United States and England. Darle Dudley descended from the
Francis Dudley branch of the family who, in the first half of the 17th century during the English civil war,
emigrated to Massachusetts seeking peace and religious freedom.

Darle W. Dudley was born on April 8, 1917 in Salem, Oregon. He graduated from Oregon State University
in 1940 with a bachelor of science degree in mechanical engineering. He worked as an engineer and then as the
manager of gear research and development at the General Electric Company (1940–64), as the manager
of mechanical transmissions at Mechanical Technology, Inc. (1964–67), and as the chief of gear technology at
Solar Turbines Inc. (1967–78). In 1978, he took an early retirement and founded the Dudley Engineering Co.,
Inc.

In recognition of his significant contributions to the development of gear art, Darle Dudley has received
several awards in the United States and Europe. In 1958, the American Gear Manufacturers Association
presented him the Edward P. Connell award. The most prestigious is the Ernst Blickle Prize awarded to him in
Germany in 1995.
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3.15 Oliver E. Saari—Inventor at the Illinois Tool Works (ITW) Spiroid
Division (1918–)

Oliver E. Saari is the creative and prolific inventor of Spiracon Roller
Screws, Planoid Gears, Endicon, and new gear drives called Spiroid,
Helicon, and Concurve (trademarks of ITW). Spiroid and Helicon gear
drives transform rotation between crossed axes. The driving link of the
Spiroid gear drive (Bohle and Saari, 1955; Saari, 1954) is a conical worm
with a constant lead whereas the driving link of the Helicon gear drive
(Saari, 1960) is a cylindrical worm. However, both these types differ
substantially from conventional worm-gear drives: (1) the gear is a face
type, and (2) the worm has different profile angles for the driving and coast
sides. They offer specific advantages: one is that the worm and the gear are
in line contact at every instant and the orientation of the line contact with
respect to the relative velocity is favorable for the conditions of lubrication.
This is especially important for drives with crossed axes where the sliding
of surfaces is inevitable in all meshing zones. Another advantage is the
almost constant top land of the gear helical teeth. The Concurve gear is a

modification of the profiles of conventional involute spur and helical gears, which results in a constant profile
curvature for the stabilization of contact stresses (Saari, 1972). Saari’s inventions bear the features of an
unorthodox way of thinking which resulted in original ideas that have already been applied in industry and will
be widely used in the future.

The life and activity of Oliver Saari exemplify that the United States benefited as a country built by emigrants
who valued education and worked exceedingly hard to attain it. He was born on March 22, 1918, in Helsinki,
Finland. In 1927, his family emigrated to the United States where, over a period of 8 years, they moved from
Brooklyn, New York, to Rochester, Minnesota, and finally to Minneapolis. After graduation from high school,
he joined the Civilian Conservation Corps (CCC) during which time he published several science fiction stories.
He then learned tool and diemaking (his father’s trade) at a vocational school before entering the University of
Minnesota to study mechanical engineering. While at the university, he worked nights as a shop inspector at
Honeywell Inc. Upon graduation in 1943, he went to work at the Buick Motor Division of General Motors
Corporation in Flint, Michigan where he became interested in gears. In 1945, he joined the Illinois Tool Works
(ITW) in Chicago and at the same time attended the Illinois Institute of Technology, receiving a master’s degree
in mechanics. In 1974, he retired from ITW and became a gear consultant.
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3.16 History of the Invention of Double-Enveloping Worm-Gear Drives

The invention of the double-enveloping worm-gear drive is a breathtaking
story with two dramatic personae, Friedrich Wilhelm Lorenz and Samuel I.
Cone, each acting in distant parts of the world—one in Germany and the
other in the United States.

Initially, the author intended to find a photograph of Samuel Cone (1865–
1949), the American inventor of the drive that carries the name of Cone
Drive Co., the main producer of the aforementioned drives in the United
States. Unfortunately, the photograph disappeared from the company files
but was finally located in the family archives with the help of Cone’s
granddaughter Mrs. Mary Bell Kluge (nee Taylor). The search ended
happily, but it was not the end of the story because during our visit to the
Lorenz Co. in Ettingen, Germany, we learned that Dr. Lorenz had invented
methods to generate the worm and the gear of the double-enveloping worm-
gear drive and that he had received two patents for this work in 1891.

Dr. Lorenz’ invention was unknown to Samuel Cone, a modest draftsman
to whom the idea of a double-enveloping worm-gear drive came indepen-
dently, as seen in the following statement from the archives of the Cone
Drive Co. in 1924:

Even though such worm-gear drives were manufactured at the Lorenz Co.,
the value of Cone’s contribution cannot be diminished when one considers
his courage and strong will. Cone acted as a lone inventor whereas Lorenz
used the skills of his many employees. Still, it took a long time and required
much effort before the Cone drive technology became applicable in the
United States. We must pay credit to the Lorenz invention, but the father of
the American invention was Samuel I. Cone. Despite these facts, the

question of who should claim exclusive rights for the double-enveloping worm-gear remains unanswered. Our
opinion is that we have to credit both Lorenz and Cone.

Wilhelm Lorenz and Samuel Cone understood very well the advantages of the drives they had invented,
particularly, the increased load capacity due to the higher contact ratio in comparison with that of conventional
worm-gear drives. Although the geometry of the Lorenz and Cone drives differs, both types offer this advantage.
Later, investigations showed that the double-enveloping worm-gear drive’s higher efficiency results from the
existence of more favorable lubrication conditions.

The complex geometry of the double-enveloping worm-gear drive, the specific conditions of lubrication
(found later), and the formation of the worm-gear tooth surface as a two-part surface inspired many researchers
to develop the analytical aspects of the meshing of the worm and the worm-gear tooth surfaces. Among such
researchers are N. I. Kolchin, B.A. Gessen, and P.S. Zak in Russia, Sakai in Japan, and Litvin in the United
States, whose investigation and results are presented in Litvin (1968,1994).

The primary manufacturer of double-enveloping worm-gear drives in the United States is the Cone Drive
Textron Co. Presently, the Lorenz Co. does not produce these gear drives.

About 15 years ago, Mr. Samuel I. Cone of Portsmouth,
Virginia, manufactured at the Norfolk Navy Yard the
first Cone Type Worm. It is believed that this was the first
instance in which Double Throated or Double
Enveloping Worm Gears, having area contact, were ever
made.

Samuel I. Cone

Friedrich Wilhelm Lorenz
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3.17 History of the David Brown Company

The David Brown story concerns a prosperous British company that
originated in the Victorian era and was successfully run by one family for
135 years. The company made significant contributions to the design and
manufacture of gear transmissions and special products.

In 1860, the first David Brown (1843–1903) founded the company when
he was only 17. Originally, he began his business as a patternmaker for cast
gears in Huddersfield and later extended it to the manufacture of cast gears.
About 1898, his sons inspired him to begin manufacturing machine cut
gears, an idea that later led to his making significant contributions to the
design and manufacture of gear drives.

After David Brown’s death in 1903, his three sons, Ernest, Frank, and
Percy, continued to run the company. Ernest took over the pattern business
and Percy and Frank, the gear design and manufacture.

When Percy Brown died in 1931 and Frank in 1941, the company was then
operated by David Brown (later Sir David), Frank’s son and the only
grandson of the first David Brown. Significant engineering contributions
made by the David Brown Company are connected with the names of these
outstanding engineers who worked for the company: F.J. Bostock, Arthur
Sykes, H.E. Merrit (1971) (later doctor), and W.A.Tuplin (later doctor and
professor). Among such contributions are the following:

1. In 1915, the invention of an involute worm-gear drive based on the
application of a screw involute surface as the surface of the worm
thread (proposed by F. J. Bostock and Percy Brown)

2. The ability to manufacture large gears (up to 40 ft in diam) following
the design and installation in 1967 of a purposely built machine tool
(later extended to 46 ft in diam with the acquisition of a Maag 1200)

3. In 1933, the design and manufacture of the Radicon worm-gear drives
(the trademark “Radicon” indicates heat dissipation by radiation,
conduction, and convection due to the special design proposed by
Arthur Sykes.)

4. The successful design of vehicle transmissions (including the Merrit-
Brown Tank Gearbox)

5. The manufacture of high-precision gears used in turbine reducers and equipment designed for the
production and inspection of gears

In recognition of the David Brown Company’s tremendous contribution to British industry during and after
the Second World War, David Brown was knighted in 1968, and Arthur Sykes received the Order of the British
Empire (O.B.E.) and a special gold medal presented by the AGMA for his services to the industry. In addition,
Arthur Sykes, Dr. Merrit, and Prof. Tuplin gained wide recognition as engineering educators and textbook
authors. Prof. Tuplin became the head of the postgraduate Department of Applied Mechanics at Sheffield
University.

Sir David Brown could not perceive a logical successor to his family-operated company and sold it in 1990.
It continues its successful activity as the David Brown Group PLC under the management of Cris Cook and
Cris Brown.

Sir David Brown

Percy Brown
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3.18 History of The Gleason Works

William Gleason (1836–1922), founder of The Gleason Works, came to
the United States to Rochester, New York from Ireland in 1851. He was a
gifted inventor and a skilled mechanic. In 1874, his invention of the straight
bevel gear planer for the production of bevel gears with straight teeth
substantially advanced the progress of gear making. Manufacturing early
straight bevel gears was a difficult process because the gears were cast in
metal and then were finished by manually filing each tooth.

Other members of the Gleason family made substantial contributions to
the prosperity of The Gleason Works. Noteworthy are the inventions of
James E. Gleason (see below) and the active role Miss Kate Gleason, the
secretary and treasurer, played in the sale of the company’s products. N.
Bartels (1997) has written an impressive article about her life and activity
in the journal Gear Technology.

The early part of the 20th century was the beginning of the automotive
industry, which required a broader application of bevel gears to transform
rotation and power between intersected axes. In the 1920’s, automotive
industry designers also needed (1) a gear drive to transform motions and
power between crossed axes and (2) a lower location for the driving shaft.
The Gleason Works engineers met these needs with pioneering develop-
ments directed at designing new types of gear drives and the equipment and
tools to generate the gears for these drives. The following patents granted to
The Gleason Works proves how innovative their response was to the
automotive industry’s needs:

1. In 1905, James E. Gleason invented a two-tool bevel generator that
enabled manufacturers to reduce the production time of straight bevel
gears by 2 times because two reciprocating blades could generate the
opposite sides of the tooth space.

2. In 1916, the process for generating spiral bevel gears and the machine
for producing them were developed.

3. In 1927, The Gleason Works developed the method for generating
hypoid gear drives.

4. In 1938, James Gleason invented the Formate cut method by which spiral bevel gears and hypoid gears
were generated.

At present, The Gleason Works holds over 700 patents. A historian studying its achievements would
discover that the company’s activity combines the design and production of cutting tools and equipment with
intensive gear research. Its major developments in gear theory follow:

1. Spiral bevel gears and hypoid gears with the gear tooth surfaces being in point contact instead of in line
contact: the bearing contact can be localized as a set of instantaneous contact ellipses, reducing the
sensitivity of the gear drives to misalignment.

2. Computerized methods (TCA, tooth contact analysis) that simulate the meshing and contact of hypoid
and spiral gear drives: before manufacturing, these programs can be used to predict the shift in the bearing
contact and the transmission errors caused by misalignment, allowing the design to be improved.
Computer programs are commercially available for the gear industry.

3. Coordinate measurement of gear tooth surfaces: the data obtained can be applied to correct machine tool
settings.

Kate Gleason

William Gleason
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4. Finite-element analysis is used to determine stresses and TCA programs to simulate the meshing and
contact of loaded gear drives.

5. Phoenix machines, six-axis, computer numerically controlled (CNC), for gear cutting and grinding:
these machines can be used to modify the geometry of gears.

Many of the solutions to gear manufacturing problems were contributed by Edward W. Bullok, Ernst
Wildhaber (1926, 1946, 1956), Meriwether L. Baxter, Jr. (1961, 1973), Theodore J. Krenzer (1981), Lowel E.
Wilcox, Wells Coleman, and Dr. Hermann J. Stadtfeld, who also summarized the achievements of Gleason
technology (Stadtfeld, 1993, 1995).
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3.19 History of the Klingelnberg and Oerlikon Companies

Klingelnberg Söhne and Oerlikon Geartec currently represent a group of
companies very well known and respected for significant contributions that
their engineers and managers have made to the technology and theory of
gears, particularly, to the development of (1) the face-hobbed process of and
the equipment for manufacturing spiral bevel gears and hypoid gears and (2)
the method of grinding the worms of worm-gear drives (the worms are
ground, or cut, by a disk whose surface is a cone). This method of
manufacturing worms was applied by industry and resulted in a new type of
worm-gear drives known as ZK-worms.

The face-hobbed process of generating spiral bevel gears and hypoid gears
is one of the crowning technological achievements in this area. Its great
advantage is the efficiency of continuous indexing; its disadvantage is the
difficulty of grinding (in comparison with the grinding of face-milled gears).
The history of the developments by Klingelnberg and Oerlikon shows that
the “crown” was not just a lucky finding but the result of enthusiastic efforts
of the inventors and risky decisions of the company managers, as exempli-
fied in the following discussions.

In 1923, Klingelnberg Söhne built a machine that used the Palloid method
for generating spiral bevel gears and hypoid gears with a conical hob. This
method was invented in the 1920’s by engineers Schicht and Preis and was
later replaced by the face-milled and face-hobbed methods.

The Oerlikon company began early, in 1886, with the production of bevel
gears by templates. Later developments are related to the names of inventors
Brandenberger and Mamano and to Oerlikon-Bührle Company engineers
who designed the Spiromatic machines and the head-cutters for them.

The Klingelnberg and the Oerlikon companies were successful because
their founders were devoted and energetic. Among those we wish to mention
are Dr. Gustav Adolf Klingelnberg and Emil Georg Bührle.

Under Dr. Klingelnberg’s (1880–1947) leadership, Klingelnberg Söhne
was transformed from a small trading company to a large manufacturer. In
appreciation of his achievements and services to industry, Aachen Univer-
sity awarded him an honorary doctorate.

Emil Georg Bührle (1890–1956) was born in Germany and in 1924 settled in Switzerland where he became
a naturalized citizen. His tremendous success there can be seen in his building the small Oerlikon Company to
a group of more than 30 Oerlikon-Bührle Companies located throughout the world.

Emil Georg Bührle

Gustav Adolf Klingelnberg
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3.20 History of the Reishauer Corporation

The Reishauer Corporation is presently well known in the gear industry for
the development of methods and equipment for grinding high-precision
involute spur and helical gears. These methods are based on the application
of two types of grinding worms: (1) a cylindrical worm whose design
parameters depend mainly on the normal pressure angle and the normal
module of the gear to be ground and (2) a globoidal worm that is designed
as the conjugate to the gear. The cylindrical worm and the gear being ground
are in instant point contact whereas the globoidal worm and the gear are in
line contact. Methods for dressing the grinding worms have been developed
as well.

These methods and machines are a logical extension of the skill and
experience of a company that has been in existence for more than 200 years.
The Reishauer Corporation was founded in 1788 by Hans Jakob Daniker, a
blacksmith and toolmaker. The activity of the company was continued by
Hans Daniker’s son-in-law Johann Gottfried Reishauer-Daniker (1791–
1848) whose name the company received in 1824. This family operated the
company over three generations: Jacob Friedrich Reishauer (1813–1862)
represented the second generation and Georg Gottfried Reishauer (1840–
1885), the third. After 1870, the ownership of the company was shared with
other partners.

The period when the company was operated by Jakob Friedrich Reishauer
deserves special attention. Jakob, a gifted engineer, married Dorothea
Bodmer, the daughter of Johann Georg Bodmer (1786–1864), a distin-
guished inventor and engineer. Bodmer was well ahead of his time in
developing tools to manufacture gears and may be considered the first
pioneer in this area. The successful cooperation of Johann Bodmer and
Jakob Reishauer resulted in their developing machines to produce the tools
used in the manufacture of screws and nuts. They also designed and
produced a lathe, a model of which still exists today.

The history of the Reishauer Corporation illustrates that the company’s
engineers have always been successful in applying the skill and experience
they accumulated throughout the years of its existence.

Jacob Friedrich Reishauer

Dorothea Reishauer



100 NASA RP–1406

3.21 The Development of the Theory of Gearing in Russia

Introduction

An die Nachgeborenen.
Wirklich, ich lebe in finstern Zeiten!

To the Descendants.
I live in dark times, indeed!

In this verse, Bertolt Brecht (Brecht, 1962, p.114), the convinced opponent of fascism, expressed with great
emotion the pain he felt while living in a communist state in East Germany. Despite the Aesopian language, its
meaning was clear for those who were unlucky enough to be born in the Soviet Union. Boris Pasternak, who
described the same fear of communist terror in his novel Doctor Zhivago and was ostracized and persecuted
for doing so, declared in the poem “The Nobel Prize” (1960, p. 246):

I am lost like a beast tracked down
Somewhere men live in freedom and light

But the furious chase closes in,
And I cannot break out from my plight.

For some who looked for a decent existence, safe harbor was found in their devotion to science. However,
during the communist era in the former Soviet Union, all branches of science were controlled by party
ideologues. The iron curtain separated Soviet scientists from the West, and the party falsified the history of
developments in science and technique to further separate them. Admission to the graduate colleges and the
recruitment of new researchers were controlled by the party through an insidious policy termed “the selection
of personnel.”

Among those who tried not to obey the dirty policy of selection were Profs. Chrisanf F. Ketov, Nikolai I.
Kolchin, Vladimir N. Kudriavtsev, and Lev V. Korostelev, to whom we are indebted for the development
of the theory of gearing in Russia. We call the years 1946 to 1980, the golden years of the Russian theory of
gearing, although the shells fell too close. A group of distinguished researchers formed the second generation
of contributors to the theory of gearing: Profs. G. I. Sheveleva (1990, 1995), M. L. Erikhov (1966, 1996),
Ya. S. Davidov (1950), V. I. Goldfarb (1996), and Dr. S. A. Lagutin (1987, 1994), to name a few.
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Chaim I. Gochman—Doctor of Applied Mathematics (1851–1916)

The pre-Soviet period of the theory of gearing concerns the research of Dr.
Chaim I. Gochman, a distinguished Russian scientist who deserves the title
“the founder of the analytical theory of gearing.”

Theodore Olivier and Chaim Gochman, two great scientists, developed the
foundation for the theory of gearing. Olivier introduced the idea of the
generation of conjugate surfaces as the enveloping process and applied the
concept of an auxiliary surface as the intermediate generating surface. In
modern terms, the intermediate surface is called the tool surface. He also
considered the gear tooth surfaces to be the envelopes to the auxiliary
surface, and he discovered the way to provide the conditions for line contact
and point contact of the generated surfaces of gears. However, Olivier
insisted that the theory of gearing was exclusively the subject of projective
geometry.

Gochman, while confirming the indisputable contribution of Olivier,
opposed his statement relating the theory of gearing to projective geometry.

By developing analytical methods, he transferred the theory of gearing to analytical and differential geometry,
releasing it from the constraints of projective geometry. His additional contribution was based on the possibility
of determining the instantaneous line of contact of enveloping surfaces in any reference system, not only in the
system of the driven gear as was determined previously.

Gochman’s pioneering work was advanced for his time and was almost forgotten until Artobolevski, a
Russian academician, “discovered” it again and inspired Prof. Kolchin (see below) to seek its application.

Dr. Gochman’s biography exemplifies one whose creativity is not recognized or acclaimed during his
lifetime. He was born in 1851 in a small city in Grodnensk County, which at that time belonged to the western
part of Russia. He graduated from Kherson gymnasium in 1871 when he was 20. His biographer Bogoliubov
(1976) did not explain the reason for his late graduation from the gymnasium, but it was probably
Dr. Gochman’s second education, the first being a Jewish theological one. He then attended Novorossiysk
University in Odessa and graduated in 1876, receiving the Golden Medal for his research project entitled
“Analytical Method of the Solution to the Gearing Problems.” He received a scholarship to continue his
education at Novorossiysk University. In 1881, he passed the exams for a master’s degree and received a 2-year
scholarship to study abroad. Gochman’s scientific career was proceeding well until, for some unknown reasons,
he could not continue his activity at Novorossiysk University and had to work as an inspector for the Jewish
Pedagogical Institute of Zhitomir. Here, he completed his master’s thesis entitled “Theory of Gearing
Generalized and Developed Analytically” (Gochman, 1886). He lost his job in 1887 when the Zhitomir Institute
was closed, and he returned to Novorossiysk University to work as an adjunct associate professor in the
mechanics department. His second period of research activity began here. In 1890, Gochman was awarded a
doctor’s degree in applied mathematics for his work “Kinematics of Machines (Part 1).” Unfortunately,
Dr. Gochman could not finish this work, planned as a capital research project.
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Chrisanf F. Ketov—Doctor of Technical Sciences and Professor of
Mechanisms and Machines (1887–1948)

Chrisanf Ketov was born to a family of peasants and had no hope of an
education but that made possible by the heroic efforts of his widowed
mother. In 1914, the young Ketov graduated from the highly ranked St.
Peterburg Institute of Technology and received a postgraduate position with
a track for teaching in the Department of Applied Mechanics. During the
difficult postrevolutionary period, he left St. Peterburg in 1919 to take a
professorship at Turkestan University. In 1922, he returned to his alma mater
as professor and head of the Department of Applied Mechanics. In 1930,
after the colleges of two universities were joined, he became the head of the
same department at the Leningrad Polytechnic Institute. He was then
appointed dean of the College of Mechanics and Machines in 1944. He kept
both positions until his death in 1948. One of his great contributions to
education was in 1934 organizing, with Profs. Viakhirev and Kolchin, the
Department of Automotive Machines.

Prof. Ketov’s personal contributions to gear technology and theory in-
clude a chapter in the Technical Encyclopedia (1927), his monograph on involute gearing (1934), and a textbook
on applied mechanics (in present terms, the theory of mechanisms and machines) written with Prof. Kolchin
(1939). He is well known as a distinguished engineer and a recipient of several patents. He deserves a special
tribute for supervising doctoral students’ scientific work in various areas, especially in the theory of gearing.

Prof. Ketov’s role in the development of the theory of gearing should be recognized not only by his personal
contributions but also by his influence on colleagues and students and by his founding The Leningrad
Committee for Analysis of Gear Problems. The Leningrad Committee was soon recognized as the National
Center of Gear Specialists and keeps the name of Prof. Ketov in memory of his work. The author of this book
worked for Prof. Ketov for 11 years as an aide on the gear committee and as a professor in his department.

Chrisanf F. Ketov was a self-made man whose knowledge of literature and history was extensive. He was
considered in all circles a very intellectual man. He was a very impressive interlocutor who was able to enrich
conversation with historical parallels and witty definitions. He had no illusions about the cultural environment
and his lifetime and cited Leo Tolstoy who said, “There are moral people and immoral people but all
governments are immoral.” Chrisanf Ketov meant of course his own government.

He faced difficult situations in his life. During the purge in the 1930’s, he was arrested as a former “cadet”
of the Constitution-Democrat Party, which was the most important liberal party in prerevolutionary Russia, but
fortunately avoided the Gulag. Then as dean of the College of Mechanics and Machines, he was accused of
resisting the policy of “selection of personnel,” making his dismissal, if not his sudden death, inevitable. An
ironic coincidence darkened the last day of his life when his request that a talented student be granted a position
was declined because of the selection policy.
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Nikolai I. Kolchin—Doctor of Technical Sciences and Professor of the
Theory of Mechanisms and Machines (1894–1975)

Profs. Ketov and Kolchin were colleagues for many years. They both
graduated from St. Peterburg Institute of Technology and then worked for
the Leningrad Polytechnic Institute. They were coauthors of a textbook on
the theory of mechanisms and machines. It was not a surprise that very often
their names appeared together and that they were considered a team. In one
such instance at a party, toasts were proposed to both of them, and a slightly
irritated Prof. Kolchin joked, “I do not mind if you join our names, but do
not expect a wedding kiss.” In reality, they had quite different personalities:
Prof. Kolchin did not like administrative duties so the administrative job was
usually accomplished by his aids out of respect for his many merits.

Nikolai I. Kolchin was born in 1894 in Sarapul to a lower middleclass
family. After graduation from high school, he was admitted to the presti-
gious St. Peterburg Institute of Technology. In 1918 after graduation, he was
assigned to a university position having a professorship track. Initially, his
interests were in thermodynamics, and he published a few papers on this

subject in highly ranked journals. However, later in 1939, he chose the theory of gears as his major scientific
area. As professor and scientist, he concentrated his activities in the Leningrad Polytechnic Institute from 1935
until his death in 1975 where he was the head of the department of mechanisms and machines.

Prof. Kolchin made significant contributions to the theory of gearing; thus, it would be incorrect to consider
him just a follower of Chaim Gochman. He developed the geometry of bevel gears and worm-gear drives with
double-enveloping and cylindrical worms and published the monograph “Analytical Investigation of Planar
and Spatial Gearing” (Kolchin, 1949), which became very well known.

Prof. Kolchin devoted his life to scientific research, not only during the week but on weekends and vacations.
He supervised the programs of 50 doctoral candidates and doctors of technical sciences and was always
available for his students and for those who needed to consult with him.
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Mikhail L. Novikov—Doctor of Technical Sciences and Professor and
Department Head (1915–1957)

Mikhail Novikov became very well known in his own country and in the
international engineering community for the invention of a special type of
helical gear. His idea was that he could overcome the barrier caused by the
relations between the curvatures of the contacting surfaces when the gear
tooth surfaces are in line contact. His approach is based on the following
considerations: (1) the line contact of helical gear tooth surfaces is substi-
tuted by point contact; (2) the unfavorable relations between the curvatures
required for line contact of the tooth surfaces do not exist any more (because
of point contact), but the contacting surface line of action must be parallel
to the gear axes; and (3) the designer is free to choose a small difference
between the curvatures to reduce the contacting stresses.

Prof. Novikov proposed that the profiles of helical gear cross sections be
chosen as circular arcs with a small difference between the radii of the circles
(Novikov, 1956). Some researchers were reminded of Wildhaber, who
proposed and patented a rack-cutter with a circular-arc profile (Wildhaber,

1926), and they began to call Novikov gears Wildhaber-Novikov gears. The main difference between these two
inventions is that Novikov gears are in point contact and have more favorable relations between the gear
curvatures. Wildhaber helical gears are in line contact and the relations between the curvatures are constrained.
Novikov’s invention became very popular in the former USSR and later in Russia, and he was awarded a
prestigious national prize. His invention inspired many researchers, which resulted in valuable contributions
being made to the theory of gearing.

Mikhail Novikov graduated in 1940 from the Military Aircraft Engineering Academy that bears the name
of the famous scientist Zhukovsky. He worked at the academy as a professor and department head and was
involved in intensive research work, which unfortunately ceased with his sudden death at a young age, a
catastrophe for his family, colleagues, and students.
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Vladimir N. Kudriavtsev—Doctor of Technical Science and Professor
and Head of the Department of Machine Elements (1910–1996)

Vladimir N. Kudriavtsev was recognized by his contemporaries as a
distinguished scientist, teacher, and gear drive designer. He was remarkable
in that his engineering intuition enabled him to predict the behavior of gear
trains under load, a talent that impressed his colleagues. The following are
among his distinguished contributions to this area:

1. Methods to synthesize planetary drives
2. An effective approach to determine the efficiency of planetary trains
3. Force distribution (a) along the instantaneous contact line, (b) between

  teeth in the case of a contact ratio larger than 1, and (c) distribution of
  forces among satellites of a planetary train

4. Development (as the leading author) of the USSR standard for comput-
  ing the strength of gears

5. Excellent experimental tests to determine gear drive life service and
failure

The son of a physician, Vladimir Kudrjavtsev was born in Ostrogozhsk, a small city in Voronezh county.
After graduation from high school, he worked in the machine industry as a designer to acquire experience while
he continued his education at the Leningrad Institute of Industry. He graduated in 1938 with distinction,
receiving a bachelor of science degree in engineering.

In 1942, he received a doctor’s degree for his research entitled “Engineering Methods of Computation of
Strength of Gear Trains.” In 1952 he received the degree of doctor of technical science for his work
“Investigation of Planetary Trains.”

In 1946, he began his teaching career as a professor of machine elements at the Leningrad Engineering
Academy of the Air Forces and then in 1958, as professor and department head of machine elements and director
of the Laboratory of the Leningrad Institute of Mechanics. Books written by Prof. Vladimir N. Kudriavtsev and
his colleagues became important handbooks for designers (Kudriavtsev, Kuzmin, and Filipenkov, 1993). Prof.
Kudriavtsev published the well-known textbook Machine Elements and was an excellent teacher who
supervised the scientific work of 67 doctoral candidates and 7 doctor of science programs.

In recognition of his achievements, Prof. Kudriavtsev received the prestigious title “Honored Worker of
Science and Engineering.”

In addition to his extensive scientific and engineering background, Prof. Kudriavtsev was a passionate lover
of music and literature as evidenced by his excellent taste and knowledge of both.
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Lev V. Korostelev—Doctor of Technical Sciences and Professor
(1923–1978)

Lev V. Korostelev was born to a family who had been members of the
intellectual class of Russian society for several generations.

 He graduated from the Moscow Machine and Tool Institute in 1950 and
then concentrated his research work there. He received a Ph.D. in engineer-
ing in 1954 and a doctor of technical sciences in 1964 for his thesis entitled
“Geometric and Kinematic Criteria of Spatial Gearing Correlated with
Loading Ability.” He then successfully continued his research and made
significant contributions, in recognition of which he was selected for the
positions of department head and vice president of academic affairs of the
university.

Dr. Korostelev belonged to the second generation of scientists who
developed the theory of gearing in Russia. He published approximately 100
papers that dealt with the following subjects: the kinematic sensitivity of
gears to alignment errors of the gear axes (Korostelev, 1970); the synthesis
of spatial gearing by applying the concept of a generating surface performing

screw motion; and the investigation of a generalized type worm-gear drive. He also received 30 patents and
supervised the Ph.D. programs of 10 graduate students.

To the deep regret of his relatives, friends, and colleagues, Dr. Korostelev’s very promising career was
interrupted by his death in a car accident.
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A

Angular velocities, 19, 35, 38, 47, 50, 51
Axes of meshing, 19, 21, 23, 28
Axis of screw motion, 38, 40, 41, 44
Axode, 38, 41

B

Base circle, cylinder, 15, 54
Bearing contact, 30, 31, 53, 59, 62, 63, 68, 71, 96

C

Centrodes, 73
CNC (computer numerically controlled)

machines, 2, 81, 82, 83, 90, 97
Common normal, 48, 52
Common surface normal, 52
Conjugation, 2
Conjugation (of gear tooth surfaces), 1
Conjugation of surfaces:

rotor surfaces conjugated, 77
Contact (of surfaces), instantaneous:

line, 8, 28, 30, 101, 104
point, 8, 28, 30, 96, 101, 104

Contact ellipse, 8, 9, 30, 96
Contact line (see Line of contact, instantaneous),

10, 11, 16, 18, 30, 96, 99, 101
Contact localization of, 28
Contact normal (common normal to the contacting

surfaces), 4, 23, 28, 47
Contact path (see Path of contact), 30, 53, 56
Contact point (current point of tangency of gear

tooth surfaces), 4, 19, 23, 30, 47, 48, 96–97,
104

Contact ratio, 32, 94, 105

Crowning (of the gear tooth surfaces), 29, 59
Curvature (normal, principal), 7
Cycle of meshing, 32, 34
Cylindrical worm, 49

D

Determinant, 23
Discontinuous function of the transmission

errors, 54
Double-circular-arc helical gears, 32
Double-enveloping worm-gear (drives), 94

E

Edge contact, 29, 32, 53, 56, 59, 62
Edge of regression, 11, 12, 15, 71
Elastic deformation, 9, 30, 32
Envelope, 3, 14, 48
Envelope (to family of surfaces, curves),  2, 3, 9,

12, 48, 49, 82, 101
Envelope to family of contact lines, 11, 16, 18

on generated surface, 16, 28
on generating surface, 18

Enveloping, two-parameter, 28, 42, 49
Equation of meshing, 2, 3, 5, 8, 14, 19, 20, 21,

28, 30, 42, 47, 48, 49, 51
Existence of envelope E2 to contact lines, 15

F

Face gear (face-gear drive), 23, 28, 59, 60, 63,
71, 81, 83

Face worm-gear drives, 71
Family of contact lines on generated surface, 11
Family of generating surfaces, 14
Family of surfaces, 2, 9, 28

Index
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Fillet, 6
Flender worm-gear, 68
Functions of transmission errors, 34

G

Gear ratio, 22, 41, 62, 73
Gearing:

concurve, 1, 93
cycloidal, 73, 77
involute, 1, 53, 56
pin, 73
planar, 1, 48
spatial, 1, 12, 106

Grinding disk, 28, 53, 62, 68, 98
Grinding worm, 49, 54, 60, 99

H

Helical gears:
involute, 12, 15, 23, 49, 56, 59, 80, 81, 82, 83,

87, 93, 104
Helicoid, 23, 28, 49
Helicon gear drive, 93

cylindrical, 71
helicon, 93

Helix, 15, 45, 46, 48, 56, 59, 77
Hyperboloid of revolution, 41
Hypoid gear (hypoid gear drive), 1, 29, 32, 41,

53, 63, 86, 89, 96, 98

I

Instantaneous axis, 4
Instantaneous axis:

rotation, of, 60
screw motion, of, 44, 66

Instantaneous center of rotation, 4, 73
Instantaneous line contact, 30, 72
Interference, 8
Involute gears

helical (see Helical gears, involute), 7, 30,
81, 84

spur, 82, 83, 84, 93, 99
Involute gears, 84

J

Jacobian, 29, 31, 56

L

Line contact (see Contact of surfaces, instanta-
neous), 2, 8, 28, 29, 53, 56, 66, 68, 93, 104

Line of action, 20, 30, 35, 37, 104
Line of contact, instantaneous, 15, 30, 48, 101,

105
line contact at every instant, 48

Linear complex, 42, 46
Local synthesis, 64
Localization of contact, 28, 29, 53, 62, 68, 71

M

Matrix, 5, 11, 14, 23
Meshing cycle (see Cycle of meshing), 8, 32
Misaligned, 29, 30
Misaligned helical gears, 56
Misalignment, 28, 30, 32, 53, 54, 59, 62, 68, 71,

96
Mismatch (of tool surfaces), 29, 53, 63
Mismatched generating surfaces, 63
Modification, 32, 53, 56, 59, 63, 66, 68

N

Noncircular gears, 81
Normal curvature, 5, 8
Normal to surface, 4, 6
Normal, unit normal to surface, 3, 9, 14, 18, 30,

43, 47, 48, 52
Null axis, 47, 48, 52
Null plane, 46, 48, 52

O

Osculating plane, 45
Oversized hob, 53, 68

P

Parabolic linear, 34
Path of contact, 29, 59
Pitch surfaces, 60
Pitch:

cones, 41, 60
cylinders, 41, 49, 50, 60

Planar gearing, 2, 4
Pluecker’s coordinates, 42, 44
Pluecker’s linear complex, 42, 43, 44, 46, 48, 51,

52
Plunging, 53, 62
Point contact, 8, 29, 30, 53, 66, 104
Point of tangency, 52
Pointing, 60, 71
Position vector, 13, 19, 22, 29, 42, 48, 51
Predesigned function of transmission errors (see

Transmission errors: predesigned parabolic
function, of), 32, 53, 54, 56, 59, 64, 71

Principal curvatures, 5, 8

R

Rack, rack-cutter, 2, 6, 12, 54, 59, 68, 82, 83, 84,
104

Regular surface, 2, 5, 9, 11
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Relative velocity, 4, 47, 48, 51
Revacycle method, 1, 86, 89
Root’s blower, 73

S

Screw compressors, 73, 77
Screw motion, 4, 28, 38, 40, 41, 42, 44, 46, 48
Screw parameter, 15, 23, 28, 38, 40, 44, 51, 66
Shaper, 2, 60, 81, 82, 83, 84
Simulation of meshing, 28, 29, 30, 31, 59, 66, 68,

83
Singularities, 15, 71, 73
Singularity, singular point, 5, 7, 11, 18, 71, 86
Spiral bevel gears, 29, 53, 63, 64, 96, 98
Spiroid gear drive, 23, 71, 93
Spur gear, 7, 15, 53
Sufficient conditions for existence of envelope, 9
Surface normal, 5, 21
Surface of action, 10
Surface representation, 14, 16
Surface torsions, 5

T

Tangent, 10, 12, 16, 17
Tangent plane, 3, 8, 30, 48
Tangent, unit tangent, 4, 48
TCA (tooth contact analysis), 29, 30, 63, 71, 89,

96, 97
Theorems:

implicit function system existence, 3, 11, 17,
29

Zalgaller’s, 2, 9, 11
Tip of the contact normal, 4
Torque split, 59
Torsions, 8
Transfer from line contact of the surfaces to

point, 30
Transfer of meshing, 32
Transition from surface line contact to point

contact, 30
Transition point on a contact line, 31
Transmission errors: 32, 34, 53, 54, 59, 63, 64,

66, 71, 96

discontinuous linear function, of, 34
nonlinear, 32
predesigned parabolic function, of, 32, 34, 64

Two-parameter enveloping, 28, 42, 49

U

Undercutting (nonundercutting), 5, 8, 60, 71, 84,
86

Unit normal, 4, 19, 22, 23, 29
Unit vector, 9, 14, 45, 48

V

Vector function, 2, 51
Vector:

free, 35
moment, 19, 35, 38, 44, 47, 48
position, 35, 37, 44
sliding, 4, 28, 35, 37
unit, 4

Velocity, 12, 44, 46, 51
Velocity:

angular relative, 4, 35, 38, 44
relative, 4, 93
relative (sliding), 3, 4
relative (sliding), of a point of one surface

with 47
tip of contact normal, 4

W

Wankel’s engine, 73
Worm-gear, 68, 94
Worm-gear drives, 28, 30, 41, 66, 68, 71, 81, 87,

88, 93, 94, 95, 98, 103, 106
Worm-gear drives, double-enveloping, 79, 81, 94,

103
Worm: 60

ZA (Archimedes’), 66, 71
ZF (Flender), 66
ZI (Involute), 66
ZK (Klingelnberg), 66, 98
ZN (Convolute), 66
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